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Abstract

The rise in popularity and the large
amount of improvements done to Machine
Learning (ML) resulted in the emergence
of a new type of attack called model ex-
traction attack. Model extraction attacks
are privacy attacks, which aim to extract
information about a victim model or even
steal its functionality. These types of at-
tacks are being heavily researched, how-
ever, it is very hard to perform compar-
isons between the proposed papers. In
this work, we present MET, which im-
plements state-of-the-art model extrac-
tion attacks on arbitrary ML models and
datasets. Using the tool, we performed
a comprehensive comparison between the
implemented attacks to see how they per-
form under different settings. Our results
show that in the case of black-box scenar-
ios, the attacks perform similarly. Based
on the results, we propose and implement
improvements for some of the attacks both
in terms of speed and performance.

Keywords: machine learning, model
extraction attacks, deep neural networks

Supervisor: Ing. Maria Rigaki
Czech Technical University in Prague
Technická 2
160 00 Prague 6
Czech Republic

Abstrakt

Rostoucí popularita a značná vylep-
šení ve strojovém učení měla za důsle-
dek vytvoření nového typu útoku, zva-
ných model-extrahující. Model-extrahující
útoky jsou útoky na soukromí, jejichž cí-
lem je získání informací o daném modelu
nebo dokonce ukradení jeho funckionality.
Tyto typy útoků jsou četně zkoumány, je
nicméně velice obtížné provést srovnání
mezi konkrétními výzkumy. V této práci
představujeme MET, který implementuje
model-extrahující útoky a umožňuje jejich
testování a experimentaci s libovlnými mo-
dely a datasety. Za použití tohoto nástroje
jsme provedli komplexní srovnání imple-
mentovaných útoků s cílem vypozorovat,
jak fungují v ruzných scénářích. Naše vý-
sledky ukazují, že u scénářů, kde je pouze
black-box přístup k modelu, útoky fun-
gují podobně. Na základě těchto výsledků
jsme navrhuli a implementaovali vylepšení
některých z těchto útoků, co se týče jejich
rychlosti i výkonu.

Klíčová slova: strojové učení,
model-extrahující útoky, hluboké
neuronové sítě

Překlad názvu: Soukromí ve strojovém
učení: analýza a implementace modelu
extrahujících útoků
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Chapter 1

Introduction

In recent years, a new branch of privacy attacks against Machine Learning (ML)
models emerged called model extraction attacks or model stealing. These attacks
focus on extracting information and copying the victim models while having limited
information about the model architecture, parameters, and training datasets. The
creation of the ML models is often very costly due to both the time and money
required to create and train them [4, 5]. It is thus crucial that the information about
a model and a model itself stays secret. This is even more important in recent years
with the rise of Machine Learning as a Service (MLaaS) and since more and more
companies use ML as part of their business model [6].

Since the original paper by Tramèr in 2016 [7] showed that model extraction
attacks are indeed possible against public models, many more possible attacks were
introduced. Model extraction attacks are still in their exploratory stage; the papers
are using different datasets and model types for testing of the attacks [2], which
makes the comparison between them hard. Not all papers have their source codes
released. Those who have use different frameworks and libraries. Some also use
specific dataset splits for the attacks, which are not described in the code or in
the publication, making the reproducibility of attacks much harder. Furthermore,
because the code was primarily created for that paper’s experiments, it is not easily
used with different models and datasets. Currently, there exists no comprehensive
comparison of the attacks found in the literature and there is no easy way to test
these attacks on arbitrary ML models and arbitrary datasets.

Available tools such as [8, 9] are offering security and privacy attack implemen-
tations for testing, but have only basic and limited support for model extraction
attacks. Currently, there is no easy way to compare and test individual model extrac-
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1. Introduction .......................................
tion attacks. This complicates the research of model extraction attacks, since any
researchers that want to test new model extraction attacks, propose improvements
to them and compare their new attacks with others must implement the existing
attacks from scratch. In this thesis, we aim to rectify these problems by reviewing
the state-of-the-art model extraction attacks and developing a tool that would allow
to easily test different ML models against these privacy attacks.

The Model Extraction Tool (MET) that is one of the outputs of this thesis has
at the time of writing, support for the largest number of model extraction attacks.
It offers an intuitive Application Programming Interface (API) and support for
arbitrary ML models and datasets. The tool also contains basic building blocks
to implement new model extractions attacks easily. Additionally, several popular
ML models and datasets are built in. As part of the tool, we also provide scripts
reproducing some of the experiments from the original attack papers. We hope
that by providing all the necessary tools for implementing and testing new model
extraction attacks, the speed and reproducibility of research can improve. At the
same time, the tool will allow end users to test their models against state-of-the-art
model extraction attacks and potentially improve their defences.

Using MET, we performed a comprehensive comparison of the current state-of-
the-art model extraction attacks, which is currently not available in the research
literature. We perform our comparison in a challenging scenario, where an adversary
has only black-box access to the victim model, limited budget, and access only to
Non-Problem Domain (NPD) data for all of the attacks. Here, NPD data is publicly
available data of the same type of content as the victim model’s input, e.g., image
data for image models and text data for text models. Unlike Problem Domain (PD)
data, it is not drawn from the same data distribution as the one used for the training
of the victim model e.g., medical image data to extract models trained on medical
images. [10]. All of our experiments were performed in the image classification
domain, where currently the majority of research in model extraction attacks is
performed [2]. However, MET is not limited to image classification and can work
with arbitrary datasets. In chapter 4 we show example on how to use the tool with
cybersecurity dataset.

The results of our comparison show that the difference in the performance of the
individual attacks is minimal when the adversary has only black-box access to the
victim model and NPD data, while the runtime performance shows a much more
significant variance between individual attacks. We also tested the basic defense
against model extraction attacks by limiting the granularity of the victim model’s
output. The results show that less granular output has a negative impact on the
performance of all attacks, however for some of the attacks the impact is only
marginal. From all implemented attacks, the largest impact was seen on ActiveThief
attack.

2



........................................1. Introduction
Finally, we improved both the speed of the attacks and the performance of some of

the attacks. Our improved implementation of the k-center method in the ActiveThief
attack, called k-center fast, is over 1000× faster that the original implementation.
We also significantly improved the query efficiency of the BlackBox ripper attack,
maintaining the same performance as the original version of the attack, while using
over 6× smaller budget.

The contributions of this thesis are following:..1. A tool that currently implements the largest number of model extraction attacks
compared to other available tools. The tool supports the ability to test model
extraction attacks against different models and datasets. We call this tool
Model Extraction Tool (MET)...2. The most comphrehesive comparative study of the different attacks to date in
terms of efficiency, applicability, and scalability...3. Improvements for some of the attacks, based on the findings from our experi-
ments.

Thesis’s structure. This thesis is organized as follows. Chapter 2 gives a theoretical
overview of Machine Learning (ML). Chapter 3 introduces privacy attacks against
machine learning, with the main focus on model extraction attacks. Chapter 4
describes the implemented Model Extraction Tool (MET), created to test model
extraction attacks. Chapter 5 presents the comparison between the attacks’ imple-
mentation in MET and the original papers. In Chapter 6 describes the experiments
and the results of the comparison of the implemented attacks in the same setting.
Lastly, chapter 7 discusses the improvements on some of the attacks and the possible
future direction of research.

3
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Chapter 2

Background

This chapter explains ML related topics which are used in different model extraction
attacks and mentioned throughout the thesis. We provide only a brief description of
each relevant topic and refer the reader to the literature for more information.

2.1 Machine Learning

ML is a subset of artificial intelligence, which creates models that can perform tasks
that would be too complex to program or that they are adaptive in their nature [11].
The goal is to create learning algorithms that work automatically without human
intervention. Rather than programming the solution for the task, the algorithm
comes up with its own program based on the provided input data, this approach is
called data-driven approach, since it relies on the accumulation of a training dataset
first [12].

In general, it is possible to say that there are mainly three categories of ML,
called Supervised Learning, Unsupervised Learning and Reinforcement Learning.
The first subsection briefly describes these three categories, and the following
subsections are dedicated to different types of learning. We follow the descriptions
from [13, 14] and refer readers to them for more details. Together with these three
main categories, we also describe the categories beyond supervised learning relevant
to model extraction attacks. These are Active Learning, Semi-supervised Learning,
and Transfer Learning.

5



2. Background .......................................
2.1.1 Main Types of Learning in ML

Supervised Learning. In supervised learning, for each training data point x the
corresponding output y is known [13]. A variable x is a vector of vectors, where
each vector represents attributes or features. y is a vector corresponding to a label
for each data point, which may have different dimension depending on the learning
task. The goal is to learn a model f with parameters θ that will map inputs to
outputs y = f(x; θ) using the training set Dtrain = {(xi,yi)}mi=1 withm input-output
pairs [13]. Examples of supervised learning are regression and classification. In
regression, the aim is to learn a model that predicts a real value output for each
data point. In classification tasks, the goal is to predict the class label for each data
point.

Unsupervised Learning. In case of Unsupervised Learning, the training set contains
only inputs Dtrain = {xi}mi=1 with m samples. Its goal is to find hidden patterns
and groupings in the data. In this case, the problem is typically to partition the
training set into some appropriate subsets. The main application of Unsupervised
Learning is in taxonomic problems in which we try to classify data into meaningful
categories [13].

Reinforcement Learning. In reinforcement learning, an agent learns by interacting
with the environment in which it exists. It operates by taking, at each time step t,
the action at from the action space A. After each action is taken, the environment
returns a state st+1 and a rewards rt as feedback to measure the success or failure
of the agent’s action. The goal of the agent is to maximize the cumulative rewards
signal [15].

2.1.2 Active Learning

Supervised learning models usually improve their accuracy with more labeled data
available during the training phase. However, often in supervised ML tasks, the size
of the labeled data is much smaller compared to the size of the unlabeled data. It is
usually costly to annotate the unlabeled data by an oracle (human or some other
source). This is where Active Learning (AL) comes in. It focuses on deciding which
data points need to get annotated to minimize the cost. It is a special case of ML,
where it is possible to query the oracle during training for labels.

As stated in [1] there are three main scenarios for AL in which the active learner
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.................................... 2.1. Machine Learning

queries data samples to the oracle to obtain the labels. The Figure 2.1 depicts each
of these scenarios:

The first scenario is Query synthesis. In this scenario, it is assumed that the
learner knows the distribution of the input space and can synthesize new data
samples that are then queried to the oracle [1].

The second scenario is Stream-based selective sampling, the key assumption is that
obtaining an unlabeled data sample is free or inexpensive, which means it is possible
to take sample data from the real distribution. The learner then decides whether to
query the data sample or discard it. The decision is usually based on the sample’s
informativeness, which is measured by the AL strategy [1].

The third scenario is Pool-Based Sampling. For many tasks, it is possible to gather
a large collection of unlabeled data at once. This is the motivation of pool-based
sampling where a large pool of unlabeled data U is available, from which an AL
strategy selects samples for querying. Unlike stream-based AL, which makes each
query decision on individual data samples, the pool-based AL performs the decision
using all of the unlabeled data points and, after ranking them, selects the best query.
Most of the work in AL is focused on pool-based scenario [1].

query is 
labeled by the 

oracle

membership query synthesis

stream-based 
selective sampling

instance 
space or input 

distribution

model generates 
a query de novo

model decides 
to query or 

discard
 sample an instance

sample a large pool of instances U

stream-based selective sampling

model 
selects the 
best query

Figure 2.1: Visualization of active learning scenarios. The image is based on the original
research [1].
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2.1.3 Transfer Learning

One problem with the training of more complex Deep Neural Networks (DNNs)
is that they require large amounts of training data to perform well and prevent
over-fitting. However, it is frequently costly to acquire enough labeled training data
for the target task. Tranfer Learning (TL) tries to solve the problem by transferring
knowledge from one task to a related target task, where the latter has fewer training
data [16]. From the definition of TL in [17]:

"Given a source domain DS and learning task TS , and a target domain DT

and learning task TT , TL aims to help improve the learning of the target
predictive function f(·) in DT using the knowledge in DS and TS , where
DS 6= DT , or TS 6= TT ."

TL assumes that the features learned by the model that explain the variation
in task TS can help with explanation of variation in target task TT . Therefore, for
example, if in the source task TS we try to classify dogs and cats and in the target
task TT we want to classify cows and sheep, we can leverage the knowledge that
the model learned in the TS , where we have enough training data and improve the
generalization from the few examples in the TT . Instead of randomly initializing the
model parameters, we take the parameters learned on TS and fine-tune the model
on the task TT during training. In the case of computer vision tasks, this works
since many visual categories share low-level notions of edges and visual shapes, the
effects of geometric changes, changes in lighting, and so on [18].

TL found, especially in computer vision, substantial success thanks to the avail-
ability of many pre-trained models on various tasks such as ResNet [19], or VGGNet
[20], where many of them are available in popular ML frameworks and online. This
availability of pretrained models allowed a rise in classification accuracy for visual
tasks with increasing computational complexity [21].

2.1.4 Semi-Supervised Learning

Semi-Supervised Learning (SSL) falls between supervised and unsupervised learning.
The goal of SSL is to leverage the unlabeled data in such a way to create a model,
which performs better than a model trained only on labeled samples. It tries to
solve the same problem as Active Learning (AL), meaning how to effectively use
the unlabeled data since the discrepancy in labeled and unlabeled data is often

8



.................................... 2.1. Machine Learning

significant in real-world problems. However, unlike in AL setting, it is impossible to
query the oracle for labels interactively. The SSL however, has some prerequisites
that the sample distribution must have for the SSL to be usable [22, 23]. These
prerequisites are the following assumptions about the input data:

. Smoothness: Two data points x and x′ that are close in the input space should
also have the corresponding labels y and y′ close.

. Low-density: The classifier’s decision boundary should preferably pass through
low-density regions in the input space: The low-density region is an area where
few data points are observed.

.Manifold assumption: If two data point x and x′ are located in a local neigh-
borhood in the low-dimensional substructure, they should have similar class
labels. These substructures are called a manifold, which is a topological space
that is locally Euclidean.

Since in our work we focus primarily on DNN we will discuss the SSL methods
used for DNN. Following the taxonomy presented in [22], the SSL methods can be
separated into five categories, i.e., generative methods, consistency regularization
methods, graph-based methods, pseudo-labeling methods, and hybrid methods. In
our work, we primarily researched the pseudo-labeling methods and thus only provide
a brief description for them. The reader can refer to [22, 23] for more details about
the other categories.

Pseudo-Labeling Methods. Pseudo-labeling methods can be separated into two
main types: disagreement-based models and self-training models. The main idea
in disagreement-based SSL is to train multiple models for the target task and use
the disagreement between the models during the training process to find the best
candidates from the unlabeled samples. The methods usually create two or three
models, which then are used to label the unlabeled samples for each other.

In the self-training scenario, there is only one model. The model is first trained
on the labeled samples and afterward uses its confident prediction to create pseudo
labels for the unlabeled data. This means that the model can create more training
data by using its existing labeled data to create labels for unlabeled data. Thanks
to their simplicity and generality, self-training SSL methods are successfully applied
in different tasks with good performance [22].
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2. Background .......................................
2.2 Deep Neural Network

In this section, we describe the general DNNs architecture and their training and
testing phase, since the model extraction attacks we implemented focused primarily
on DNNss. We also introduce a subcategory of DNNs called Convolutional Neural
Networks (CNNs), which in recent years achieved tremendous performance in image
classification tasks [19, 20] and are used in most of the attack papers and in our
experiments. Our description is based on [12, 18, 24]. The reader can refer to them
for more details.

The Deep Neural Network (DNN) is composed of L different functions f , connected
in a chain to form a hierarchical structure. We refer to these functions f as layers,
where each layer in the network is represented by neurons (or sometimes called units).
Typically the first layer is called the input layer, the last layer is called the output
layer, and layers in between are called hidden layers. What makes DNN deeps is
that it has multiple hidden layers, i.e., two or more. Neurons are basic computing
units that apply an activation function (e.g., sigmoid, RELU, leaky RELU) to the
previous layer output weighted by parameters θ. Each layer i for i ∈ 0 . . . L is
representing a function fi and is parametrized with a vector of vectors θ(i), where
each vector represents parameters (e.g., weights, bias) for each neuron in the layer.
These parameters impact the activation of each neuron and are the “knowledge” of
the DNN model f . Following this definition, the DNN is defined and computed as
follows:

M(θM; x) = fL(θ(L); fL−1(θ(L−1); . . . f2(θ(2); f1(θ(1); x)))) (2.1)

where θM = {θ(1), θ(2), . . . , θ(L)} are parameters of the model M and vector x
represents input data. The illustration of basic neuron and general DNN can be
seen in Figures 2.2 and 2.3. To make our terminology consistent with other works
we will use f to symbolize a ML model from now on in the thesis.
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Figure 2.2: Illustration of a single neuron in a DNN. Parameters θ(i)
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Figure 2.3: General DNN architecture with L layers, where each layer is fully-connected.
D represents the input size, C represents the number of output classes and mi for
i ∈ 0 . . . L represents the number of neurons in the ith layer.

In this work, we primarily focus on image classification tasks, where the objective
is to assign a label to an input corresponding to a single class c from a predefined
set of classes C and thus we describe the training and testing of a supervised DNN
model.

2.2.1 Training Phase

As stated in [2, 18] supervised learning usually follows the Emprirical Risk Mini-
mization (ERM), the idea is that we do not know the true data distribution that
the model will work on, instead we use the training set to estimate the performance
of the model since it is a subset drawn from this distribution. So for the model
M ERM algorithm tries to find the values of its parameters θ that minimize the
objective function calculated as an average over the training set:

J (Dtrain; θ) = 1
m

m∑
i=1

l(f(xi; θ),yi) (2.2)

where l(·) is a loss function (e.g., cross entropy, MSE) that measures the error
between the prediction of the model f and the correct output y. The m is the
number of samples in training set Dtrain. Often times regularization λ×R(θ) term
is also added to the loss function to prevent over-fitting of the model and reduce its
complexity, the λ is used to balance between these two.

The minimization of the objective function is usually done with iterative opti-
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2. Background .......................................
mization algorithms such as gradient descent that follow the objective function’s
gradients’ path. DNN’s usually require a large dataset to learn. To improve speed
instead of taking a single gradient step after each sample, we can make batches of
multiple samples on which we calculate the gradient. This type of gradient descent is
called mini-batch Gradient Descent but is often called Stochastic Gradient Descent
(SGD) in literature even though SGD refers to using a single example at a time to
evaluate the gradient [12]. Hyper-parameters such as learning rate, momentum, etc,
are also an important part of optimization algorithms, which can greatly influence
the performance of the final model.

The parameters θM themselves are adjusted in DNN with a back-propagation
algorithm after each forward pass through the network that propagates error gradients
with respect to the parameters from the output layer to the input layer. The
description of the back-propagation algorithm is out of the scope of this thesis and
we refer to [12, 18] for more details.

2.2.2 Test Phase

Once the training phase is completed, the parameters of the model, θ, are fixed.
A DNN model can then be deployed and is used to make predictions on the test
data. Since we are primarily considering classifiers, the DNN usually has a softmax
function applied to its output to create a probability vector, which encodes its
confidence of input x belongning in each of the classes. Ideally, the model is able to
generalize well and make accurate predictions for inputs outside of the training set.

2.2.3 Convolutional Neural Network

Convolutional Neural Network (CNN) models are a category of DNN models they
are similar to ordinary models in that each layer of the network is fully connected
to the previous layer. The problem with fully connected networks is that they do
not scale well for full images, which generally have width, height, and depth. For
example, 224× 224× 3 would lead to neurons that have 224× 224× 3 = 150, 528
weights, and the model would require multiple such neurons, which would increase
the number of parameters dramatically. CNN work with the assumption that the
input is an image, which allows them to encode properties in their architecture,
which makes the forward pass through them more efficient and lowers the number
of necessary parameters [12]. At the heart of a basic CNN are three main layer
types: the convolution layer, the pooling layer, and the fully-connected layer. A
schematic representation of a CNN can be seen in Figure 2.4. We will focus only on
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Input image Convolutions Pooling Fully Connected

Figure 2.4: Example of CNN showing both convolution layer and pooling layer.

the description of the convolution and pooling layers since they are specific to the
CNN.

In the convolution layer, the model is learning a set of filters. Each filter is taking
only a small section of the image but across the input volume’s full depth. As an
example, we can take the typical first convolution layer of CNN, which can have
dimensions of 7x7x3 (i.e., 7 pixels width and height and depth of 3 since pictures
usually have three color channels). The filter slides across an image during a forward
pass. At each position, a dot product is calculated between the filter and the input
from the image. The result is a 2-D activation (feature) map for each filter, which
shows the filter’s response at each position of the input. Through the activation
maps of each filter, the model can learn interesting visual features of the input, such
as edges and colors in earlier layers and more complicated patterns in later layers.
These maps are then stacked and are the output of the convolution layer.

Pooling layers are used in CNNs to reduce the height and width of the feature
maps in the network but keep the depth, which results in the decrease of parameters
and makes the computation faster. This also protects the network from overfitting.
Similarly to the convolution layer, the pooling layer uses a filter, which slides over
the input and applies an operation (e.g., MAX, AVG) at each position of the input.

13



14



Chapter 3

Model Extraction Attacks

Model extraction is a type of privacy attack, where an adversary that aims to
obtain information about a victim model or to extract the model itself. The goal of
the attacker is often the creation of a substitute model that approximates or even
matches the victim model. To achieve this, the adversary might try to obtain the
values of the victim models’ parameters [7, 3], hyper-parameters [25] and architecture
[26]. This chapter is dedicated to the introduction of the problematic of model
extraction attacks and the current state-of-the-art research in the area. We shall
also present the attacks selected to be implemented in the model extraction tool and
the reasoning behind the selection.

3.1 Threat Model

Before describing the individual model extraction attacks, we must introduce the
threat model in which these attacks work. This means describing the individual
actors, their capabilities, and their goals. Our threat model is based on the threat
model introduced in [2] for privacy attacks.

3.1.1 Actors

Regarding the actors, we have the data owner, the model owner, the end-user and
the adversary, where each has a different relationship to the ML model.

15



3. Model Extraction Attacks ...................................1. The data owner’s primary concern is that both the information about their
dataset and the samples themselves are not leaked...2. The model owner depending on the setting, might share some information
about their models, such as parameters or the architecture. Their main concern
is that the information that is kept private stays private. The data owner can
also be the model owner and vice versa...3. The end-user is interested in using the model provided by the model owner to
get predictions on their data. Usually, they can access the model either via an
API or through an application to which they use to query their data...4. The adversary depending on the settings, might have the same access to the
model as a end-user, or they might have access to more information about the
model.

The object of interest for the adversary changes depending on the the privacy
attacks. For model inference, reconstructing attacks and property inference attacks,
the focus is acquiring information about the training dataset Dv, while in the case
of a model extraction attack, the focus is the model. In this thesis, we are focused
on model extraction attacks, we consider an adversary, whose primary interest is
the information related to the model provided by the model owner. This machine
learning model for model extraction attacks is often called the victim model, which
we symbolize as fv for the remaining of this document. In figure 3.1 we depict the
actors, assets, and the relationships between them.

3.1.2 Adversary’s Capabilities

The vital thing to consider is the adversary’s capabilities, which are usually concerning
the adversary’s knowledge about the victim model. The case where the adversary
knows everything about the model (e.g., architecture, training data, parameters,
hyper-parameters) is called a white-box attack. The opposite case where the adversary
does not know anything about the model is called a black-box attack. Between these
two extremes, we can find adversaries with varying knowledge about the victim
model. These attacks are called partial white-box as mentioned in [2].

Another thing to consider is the knowledge the adversary has about the problem
domain. This means whether or not the adversary knows for which task the victim
model fv was trained. It is reasonable to assume that in most cases the adversary
will know as much about the problem domain as the model owner.
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Adversary

Data owner End-userModel owner

Training 
set D

Victim 
model

UsesCreatesOwns

Wants information about Has access to

Figure 3.1: Threat model of privacy attacks depicting the individual actors and their
capabilities. The dashed lines represent the flow of information. This image is based on
the original from [2].

In black-box attacks, the only information the adversary can get is through the
victim model’s query responses. However, these responses can differ in the degree of
informativeness, either in the best case, returning the probabilities for each class or
returning responses that might be one-hot encoded, i.e. returning only information
about the most probable class. Chandrasekaran et al. [4] described a parallel that
can be drawn between Active Learning Active Learning (AL) and model extraction
attacks in the context of MLaaS, where the oracle is not human as is commonly the
case but the victim model fv.

3.1.3 Adversary’s Motivation

There are two main reasons an adversary would be interested in extracting infor-
mation about the victim model fv. The first type of attacker we can consider is an
attacker motivated by monetary gain. The training of the victim model is usually
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3. Model Extraction Attacks .................................
expensive both in terms of time and money. The model owner is thus interested
in getting a return on their investment by providing the model behind a paywall,
which is usually the case for MLaaS that charges end-users for queries. By creating
a substitute model fs, the adversary can circumvent the paywall to get annotations
for their data or monetize it the same way as the original model.

The second motivation is reconnaissance, where the victim model’s information can
help the adversary perform additional attacks against the victim model. This mainly
refers to security attacks, specifically evasion attacks. By obtaining a substitute
model, which behaves similarly to the victim model, the adversary suddenly works
in a white-box scenario when crafting the adversarial inputs to fool fv. This can
also be leveraged in membership inference attacks, i.e., privacy attacks.

3.1.4 Adversary’s Goals

We divide the adversary goals according to the precision of the extraction of the
substitute model as described in [3]. The precision here represents the amount
of agreement between the victim model fv and the substitute model fs. Starting
from the most precise extraction to the least precise, the adversary can have the
following goals functionally equivalent extraction, fidelity extraction and task accuracy
extraction. We depict each of these goals graphically in figure 3.2.

Functionally Equivalent Extraction

The adversary’s goal is to construct a substitute model such that ∀x ∈ X , fs(x) =
fv(x). Meaning that for any possible input x the substitute model fs has the same
predictions as the victim model fv. As mentioned in [3] this is the hardest possible
task in model extraction when working with only input-output pairs. The final
substitute model fs of funtionally equivalent extraction is depicted in Figure 3.2 as
a blue line, which also represents fv.

Fidelity Extraction

Instead of focusing on agreement over the whole input space X fidelity extraction
focuses on maximizing similarity of predictions between the substitute model fs
and the victim model fv on some target distribution Df over X . The similarity is
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measured via some similarity function S. This means that the adversary is interested
in that the substitute model fs has the same correct and incorrect predictions as the
victim model on the Df . This goal is much easier for the adversary to achieve than
the functionally equivalent extraction, where the goal is to achieve perfect similarity
on every target distribution and every similarity function. The substitute model fs
created by the attacker, whose goal is fidelity extraction, is depicted as the green
line in Figure 3.2.

Task Accuracy Extraction

Here, the adversary tries to achieve the best possible performance on some task
distribution Dt from X × Y . This makes the problem easier as fs no longer has
to copy the wrong predictions of fv. Instead, the adversary is only interested in
that fs achieves similar or better performance than fv on Dt. The main difference
between the fidelity extraction and task accuracy extraction is that in the former,
the adversary controls Df and does not necessarily care about generalization in the
underlying task, while in the latter the Dt is the true task distribution. The orange
line in Figure 3.2 represents the substitute model fs created by an attacker who
focuses on task accuracy extraction.

Figure 3.2: Visualization of the adversary goals. The blue line represents the decision
boundary, represents both the victim model and adversary, whose focus is functionally
equivalent extraction. The green line shows the final decision boundary created by an
adversary that focuses on fidelity extraction. Finally, the decision boundary created by
the adversary focusing on task accuracy extraction is represented by the orange line.
The figure is based on the original from [3].

3.2 Attack Requirements

Following the above introduction of the threat model, we would like to dedicate this
section to describe what attributes we were looking for when researching the current
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state-of-the-art model extraction attacks. The four main points on which we focused
during the selection process are:

. The attack threat model should assume that the adversary has only limited
knowledge about fv. This means we are primarily focused on attacks which are
close to or being black-box.. The attack focuses primarily on stealing NN, specifically DNN but should be
able to work with an arbitrary model architecture for both the substitute and
victim model.. If possible, the attack should not be limited to the image classification task,
where most of the research in model extraction attacks is done.. The primary adversary’s goals of interest were fidelity and task accuracy extrac-
tion, since both of them are much easier to achieve than functionally equivalent
extraction.

Additionally, we tried to find attacks which employ different ML approaches to
perform model extraction. Another aspect that influenced the attack selection was
the availability of information about the test setups for individual attacks as well as
if the authors provided code for their experiments. The last two reasons were not
the most important factors, but they were also considered, since they allow us to
easily compare the correctness of our implementation with the original.

3.3 Attack Metrics

Since we are interested in fidelity extraction and task accuracy extraction in the
attacks and perform the experiments in the image classification domain, we used
the following two metrics to compare the performance of the different attacks. The
first one is the accuracy of the final substitute model fs at the end of the attack on
the test set Dt, which tells us how good was the attack in task accuracy extraction.
The accuracy of classification model f is calculated with the following formula:

Accuracy(f) = Number of correct predictions
Total number of predictions (3.1)

where the correct prediction is the prediction, where the predicted label corresponds
to the true label of the sample. The second metric we looked at is the agreement
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between the victim model fv and the substitute model fs on the test set Dt, which
is calculated as:

Agreement(fs, fv) = 1
‖Dt‖

∑
x∈Dt

I(fs(x) = fv(x)) (3.2)

where I is the indicator function which is 1 if there is agreement between the
models and 0 otherwise. This metric tells us how good was the attack in fidelity
extraction and was used in both [7] and [10] to measure the performance of the
attacks.

3.4 Researched and Implemented Attacks

In table 3.1 a non-exhaustive list of papers on model extraction attacks, which were
researched and considered to be implemented in the testing tool. From the researched
attacks according to our criteria, which we mentioned in 3.2 we chose to implement
in our tool CopyCat [27], BlackBox [24], ActiveThief [10], KnockOff-Nets [5] and
BlackBox ripper [6] attacks. Each of these attacks is based on different techniques:
active learning (i.e., ActiveThief), reinforcement learning (i.e., KnockOff-Nets),
learning using adversarial samples (i.e., BlackBox), and learning with the help of
GAN (i.e., BlackBox ripper). We believe that this selection can show the diversity
of possible model extraction attacks nicely. We also want to clarify the selection of
the BlackBox attack since it is limited to image classification, which does not satisfy
one of our criteria. We chose to implement the attack since it is well documented
and relatively easy to implement. We were also interested in the performance of the
attack.

For each implemented attack, we provide a brief explanation of the attack, the
assumptions about the adversary’s capabilities, the ML algorithms used, and the
information about the used datasets. Since we are primarily focusing on image
classification tasks in this thesis, we will mainly mention only those datasets related
to image classification with their name. We leave it to the reader to check the
corresponding papers for more details
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Paper Limited

knowledge
about fv

Works
with

arbitrary
model ar-
chitecture

Not
limited to
image clas-
sification

Fidelity
extraction

Task
accuracy
extraction

Tramèr et al. [7] X X X

Binghui et al. [25] X X

Jagielski et al. [3] X X X

Honggang et al. [28] X X X

Oh et al. [26] X X

Papernot et al. [24] X X X

Silva et al. [27] X X X X

Pal et al. [10] X X X X

Orekondy et al. [5] X X X X

Barbalau et al. [6] X X X X

Table 3.1: Researched model extraction attacks. The task fidelity and task accuracy
extraction column represent what type of extraction was the focus in the corresponding
paper.

3.4.1 BlackBox Attack

The BlackBox attack from Papernot et al. [24], focused on showing an attack against
a DNNs that would create a substitute model using a synthetic dataset, which could
be then used to craft adversarial samples that the victim model would missclassify.
The proposed attack uses the so called Jacobian-based dataset augmentation to
generate new samples of the synthetic dataset. The dataset augmentation works
by adding a small perturbation to the original sample x in the direction of the
gradient with respect to the label given to the sample by the victim model fv(x).
The perturbation is defined as follows:

x́ = x + λ× sgn(JF (x)[fv(x)]) (3.3)

where λ represents a step size and it is a hyperparameter that is specified before
starting the attack. JF represents the Jacobian matrix and fv(x) represents the
prediction of the victim model on the input sample x. As mentioned in [29] the
Jacobian augmentation is the same as the calculation of Fast Gradient Sign Method
(FGSM) adversarial attack [30].

The attack starts with an initial adversary’s dataset Da consisting of seed samples,
which are classified by the victim model fv and create an initial training set D̃1 used
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in the trainining of the substitute model fs. Following the training, new synthetic
samples x́ are generated using the Jacobian-based augmentation. The augmented
samples Daug, i are used to queriy the victim and (x́, fv(x́)) are added to D̃i+1. The
substitute model is then retrained from scratch with the updated dataset D̃i+1
and the whole process repeats for ρ iterations, where the authors call each of these
iterations substitute training epoch. The whole attack process is shown in Figure 3.3.

Augmentation Query augmented samples

Query adversary dataset

Train

1

23

4 5

Figure 3.3: Flowchart depicting the steps of BlackBox attack.

The main focus of the paper was to show that adversarial examples created on the
substitute model can be used to fool the victim model, thus the attack is not focused
on the accuracy of the final substitute model but that it approximates the decision
boundaries of the victim model well. The attack expects that the adversary has
limited knowledge of the victim model and has only black-box access to the victim
model. The adversary is also assumed to have access to the data samples from the
Problem Domain (PD) (e.g. images of digits in case the victim is digit classifier),
which are used as the seed samples for the attack. The attack was tested against a
DNNs trained on MNIST [31] and GTSRB [32] datasets and the results showed both
good transferability of the adversarial images created with the substitute model and
also accuracy of the substitute model. The authors additionally also showed that
their attack was general enough and could also be used against other ML algorithms
such as LR, SVM and DT.

The vanilla version of the attack has, however, a problem with query efficiency.
The attack budget corresponds to n× 2ρ, where n represents the number of seed
samples. The authors proposed reservoir sampling as a solution to this problem.
Instead of querying all newly generated synthetic samples, k random samples are
instead chosen at each iteration starting from iteration ρ > σ, where the first σ
iterations run normally. This change makes the new attack budget n×2σ+k×(ρ−σ).
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3.4.2 CopyCat Attack

Silva et al. [27] proposed the so-called CopyCat attack. They showed that it is
possible to steal the victim CNN model by querying it with random unlabeled
natural samples. The idea of the attack is based on the hypothesis that the CNNs
does not require training samples from the problem domain to operate in it. So
for their attack they used a combination of PD and Non-Problem Domain Natural
(NPDN) samples to extract the victim model fv.

The attack is separated into two steps. In the first step, the adversary generates
the so-called fake dataset D̃. The fake dataset Da is created from the unlabeled
samples that the attacker prepares before the attack, which are labeled by the victim
model fv. The authors call the fake dataset labels created by fv as stolen labels.
This fake dataset {x, fv(x)} ∈ D̃ should capture the victim model’s feature space fv,
allowing a different network to be trained and achieve similar performance as the
original. After the attacker successfully creates the fake dataset D̃, the substitute
model fs is trained from scratch with a standard training approach. Figure 3.4
shows the flowchart of the attack.

Query

Train

1

2 3

Figure 3.4: Flowchart of CopyCat attack.

The attack was tested on both victim and substitute models using the VGG16 [20]
architecture. The tests were performed over three distinct problem domains: Facial
Expression Recognition (FER), General Object Classification (GOC), and Satellite
Crosswalk Classification (SCC). For GOC CIFAR10 [33], STL10 [34] datasets were
used. In the case of FER and SCC, multiple different datasets were used, but we
refer to [27] for the specific list of datasets for brevity. For all the problem domains
the whole ImageNet dataset [35] was used for NPDN samples. The authors tested
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multiple types of Da in their paper (e.g., only PD samples, PD and NPDN samples).
The results showed that the substitute models could achieve good accuracy similar
to that of the victim model in all cases but the combination of PD and NPDN
samples showed the best results.

The authors also compared the substitute models’ performance on the fake dataset
with that of substitute models trained only on PD samples with the original labels.
The substitute models trained using a fake dataset achieved better accuracy than the
models with PD samples with original labels. This result shows that to copy a victim
model, it is more important to have its predictions (together with its mistakes) than
to have a smaller version of the problem domain dataset (with correct labels).

This work was the first that showed the possibility of copying a victim DNNs
model with random unlabeled data taken from the Internet. The attack’s main
problem is that it does not optimize its query selection; it simply queries all of the
available samples of the adversary’s dataset to the victim model and lets it annotate
it. The authors’ threat model assumes only black-box access to the model and
requires only labels as the victim model’s output.

3.4.3 ActiveThief Attack

The ActiveThief framework proposed by Pal et al. [10], leverages Active Learning
techniques to perform model extraction attacks. The paper focused on using non-
problem domain unlabeled datasets to extract the victim model. The framework
uses four different pool-based active learning sampling strategies to perform the
extraction. Their proposed attack follows the typical pattern of active learning. The
adversary initially selects k random samples xj ∈ Da, j ∈ {1, k} for the query set
Q1 and these samples are labeled by the victim model fv. These labeled samples
(xj , fv(xj)) are added to the labeled dataset D̃1. Afterwards the attack runs for σ
iterations, where the substitute model fs is retrained in each iteration from scratch
with the current labeled dataset D̃i, i ∈ {1 . . . σ}. After the training of fs, the newly
learned substitute gives predictions for unlabeled samples from Da. The authors
call these predictions approximate labels. Afterwards, an AL technique is used to
score the samples with the approximate labels and selects the k best ones for the
query set Qi+1 that is used to query fv. The samples from Qi+1 and the retrieved
labels are then added to the labeled dataset D̃i+1. The whole process is depicted in
Figure 3.5.

The four AL techniques used in the paper were entropy, k-center, DFAL and
DFAL+k-center. The entropy strategy is based on the uncertainty strategy which
calculates the entropy of fs prediction on each unlabeled sample in Da:
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Figure 3.5: ActiveThief attack flowchart

Hn = −
C∑
j=0

fs(xn)j log(fs(xn)j) (3.4)

where C is number of classes in the classification problem and xn represents
the nth unlabeled sample in Da. After calculating the entropy, k samples with
the highest entropy values i.e., the samples on which the substitute model is most
uncertain, are selected for the query set Qi+1.

The k-center strategy uses the greedy k-center technique [36] that tries to select
the most distinct unlabeled samples from Da. The samples in the query set D̃i are
used as the initial cluster centers for the algorithm, with labels from fs. Afterwards,
in each iteration, the algorithm selects the most distant unlabeled sample from Da

from all current centers:

(x∗, fs(x)∗) = arg max
(xn,fs(xn))∈D̃a

min
(xm,fs(xm))∈D̃i

‖fs(xn)− fs(xm)‖22 (3.5)
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where xn represents the nth unlabeled sample from Da and xm represents the
mth sample from labeled dataset D̃i. the selected sample (x∗, fs(x)∗) is then added
to the D̃i as new center. This process is repeated k times to find the other samples
for query set Qi+1.

The DeepFool Active Learning (DFAL) strategy uses the DeepFool adversarial
attack [37] to perturb each unlabeled sample x ∈ Da until fs misclassifies it. Then
the peturbation on the sample is calculated αn = ‖xn − x́‖22 and the k samples
with the smallest peturbation αn are selected to the D̃i+1. The idea behind DFAL
technique is that the samples with the smallest perturbation are closest to the
decision boundary of fs.

The last strategy DFAL+k-center first selects l unlabeled samples from Da using
the DFAL strategy and from these, k samples are selected with the k-center strategy.
The reasoning behind this combination is that while k-center selects the most distinct
samples, it does not necessarily select the most informative ones. On the other hand,
the DFAL selects the most informative, but it might not select the most diverse
samples. With the combination of these strategies, the deficiencies should disappear,
and the samples are expected to have both good diversity and be informative at the
same time.

The authors tested their framework against CNN models using the MNIST [31],
the CIFAR10 [33] and the GTSRB [32] datasets. The architectures for victim and
substitute models were simple custom CNNss. A subset of ImageNet [35] was used as
Da . The authors also conducted tests on text classification datasets. In both cases,
their results showed that all active learning techniques outperformed the simple
random strategy and achieved good fidelity extraction of the victim model. The
authors also tested the transferability of their adversarial samples crafted by their
substitute models. The threat model of their attack assumes only black box access
to the model and probabilities as the output of fv, however the attack showed good
results even with only labels as output.

3.4.4 KnockOff-Nets Attack

The KnockOff-Nets attack was proposed by Orekondy et al. [5] and it is based on a
reinforcement learning approach. Instead of the adversary trying to find the most
informative samples of Da, the attack leaves this work to the substitute model
itself. The authors’ attack is based on the reinforcement learning policy of gradient
bandit algorithm [14] and their research focused on stealing image classification
CNN models. Before the attack the adversary needs to obtain a labeled dataset Da,
which may consist of both PD and NPDN samples. The labels of the dataset are
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Figure 3.6: KnockOff-Nets attack flowchart

used to represent the actions a, which the model can take. The attack itself can be
separated into two main steps according to the training of the substitute model fs.
The online training part and the offline training part. During the online training
part the attack samples the Da over σ iterations. In each iteration t action at ∈ A
is selected and k samples xt corresponding to the action are queried to the victim
model fv and labeled. The fs is then trained on these new samples and a reward is
calculated afterwards for each of them. In 3.6 we depict the attack’s flowchart.

The proposed rewards for the attack are certainty, diversity and loss. The certainty
reward uses a margin-based certainty measure, which tries to promote samples that
the fv is most certain about. The reward is calculated for each selected sample in
the iteration xt as the difference between the class with the highest probability and
the second highest probability:

Rcert(fv(xt) = P (fv(xt)1|xt)− P (fv(xt)2)|xt) (3.6)

The diversity reward tries to encourage the attack to explore different actions a
to prevent the repeated selection of the same label and is calculated as:

Rdiv(fv(x1:t)) =
C∑
c=0

max(0, avg(fv(xt)c)− avg(fv(xt−∆)c)) (3.7)
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where avg(fv(xt)c) represents the mean probability of class c in the current itera-
tion and avg(fv(xt−∆)c)) represents the mean calculated over the past ∆ iterations.

Lastly, the loss reward encourages samples on which the prediction of fs does not
correspond to the prediction of fv:

RL(fs(xt), fv(xt)) = L(fs(xt), fv(xt)) (3.8)

After calculating the reward rt, the attack updates the potentials of each action
a ∈ A with the gradient bandit algorithm [14]:

Ht+1(a) =
{
Ht(a) + α(rt − avg(rt−∆))(1− Pt(a)) a = at

Ht(a)− α(rt − avg(rt−∆))Pt(a) a 6= at
(3.9)

where α > 0 represents a step-size parameter and avg(rt−∆) is the average of all
rewards up to t− 1. The action preferences H(a) are initially all set to zero, which
means that each action has same probability of being selected. The avg(rt−∆) is
used as a baseline which measures if the current reward is higher or lower than the
average reward. This influences whether the potential should be increased or lowered
for at. The potentials for the rest of the actions a move in the opposite direction.

The probabilities for each action Pt(a) in iteration t are calculated by the softmax
function applied to the potentials:

Pt(a) = eHt(a)

m∑
i=0

eHt(ai)
(3.10)

, where m is the number of possible actions. This is repeated for σ iterations,
until the attack’s budget B is exhausted. Following this, the offline part of the
attack begins, where fs is trained from scratch on all selected samples and the final
substitute model is created.

The authors tested the attack using ResNet34 [19] as both the victim and substitute
model. The tests were conducted over multiple image classification datasets, which
included Indoor67 [38] and Caltech256 [39]. Random NPDN samples were taken from
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the ImageNet [35] and OpenImages [40] datasets as Da. In some of the experiments
they were also used in combination with PD samples from the tested datasets. Their
tests were focused primarily on the task accuracy of fs. The results showed that
the substitute model fs, was able to achieve very good accuracy, in some cases even
higher than fv. One of the interesting results of their experiments was that the fs
trained with the same samples as the victim fv but with labels from fv can achieve
better accuracy than the victim model itself. Their threat model assumes that the
adversary has only black box access to the victim model and is able to only query
fv and read its outputs. The victim model’s output in their experiments is assumed
to be a full probability vector.

3.4.5 BlackBox Ripper Attack

BlackBox ripper attack was proposed in [6] and its main focus was attacks against
CNN models used for image classification. The attack uses a different approach
when constructing the adversary dataset Da. All of the previously mentioned attacks
required that the adversary has a dataset Da, which they prepare prior to the attack
and they use it during the attack. BlackBox ripper tries a different approach with
the use of Generative Adversial Network (GAN) models. The adversary first trains
a GAN model, which does not necessarily have to generate samples corresponding
to the classes that the victim model fv was trained to predict. Then through an
evolutionary algorithm, the GAN creates samples that the fv predicts with high
confidence for a specific class c ∈ C. The substitute model fs is then trained on
these labeled synthetic samples. The whole process is visualized in Figure 3.7.

The evolutionary algorithm traverses the latent space to find the optimal samples
for each class of fv. The algorithm runs over multiple iterations, selecting latent
vectors with which the GAN model generates images with the highest probability
for class c. The targeted class c is selected randomly before starting the algorithm.
The search stops when one of the samples achieves a loss smaller than a threshold
value t, where the loss is calculated as the mean squared error between the desired
prediction of fv and the prediction for the sample by fv. The desired prediction is
the one-hot encoded output with the target class c being 1.

The authors tested the attack on multiple image classification datasets, including
CIFAR10 [33]. In their experiments, they used a Generative Adversial Networks
(GANs) that they trained themselves and also used pre-trained ones available online.
The victim and substitute models used multiple different popular CNN architectures.
The focus of the tests was on the task accuracy of the substitute model and only
black-box access to the victim model. They were able to achieve good accuracy for
the substitute model. They even achieved higher accuracy than the KnockOff-Nets
attack [5], which they used to compare the different approaches to model extraction
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Figure 3.7: Flowchart of BlackBox ripper attack

attacks. There is, however, a problem with the query efficiency of the attack, which
the authors mention in their paper.

31



32



Chapter 4

Model Extraction Tool

The following chapter is dedicated to the detailed description of Model Extraction
Tool (MET). MET through its easy-to-use API and built-in attacks, datasets, and
models, allows easy experimentation and testing of existing model extraction attacks.
It also has all the necessary building blocks for easy creation and prototyping of
new attacks. The goal of MET is to make it easier to try state-of-the-art model
extraction attacks and compare them in different settings. We also try to provide the
necessary building blocks to create new attacks. The tool can be used not only by
researchers that want to compare attacks under similar settings, but also by anyone
that wishes to test their model and see how susceptible it is to model extraction
attacks. The MET is available on GitHub [41].

As mentioned in Chapter 1, model extraction attacks are in their exploratory
stage [2], and there is still no consensus on what test datasets should be used, nor
which model architectures are the best for the experiments. These issues result in
complications when comparing the results from the previous work. The situation is
made even more challenging since not all papers release source code with the original
implementations of the attacks. MET aims to fix these issues.

4.1 Design Requirements of MET

Since the goal is to make it easy for anyone to try and experiment with model
extraction attacks, the following requirements were followed during the tool’s design.
The tool:
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4. Model Extraction Tool.....................................1. Must allow the user to configure individual attacks easily...2. Must contain examples of the attacks...3. Should work on any major Operating System (OS)...4. It should be possible to use a Graphical Processing Unit (GPU) if it is present
in the system...5. Should contain models and datasets, which can be used to bootstrap user
experiments...6. Must allow the use of custom datasets...7. Must allow the use of custom model architectures...8. Must allow testing attacks on user-supplied machine learning models...9. Should allow testing models regardless of the ML framework used.

MET meets all the above requirements, except for 8. We support arbitrary ML
frameworks but only in the case of the victim model. For the substitute model, the
support is limited only to models implemented with PyTorch [42] at the moment.
The main reason for this limitation was that the primary focus of this work was
on model extraction attacks applied to DNNs and PyTorch was the framework of
choice for implementing them.

4.2 Used Libraries

The two primary libraries around which the framework is built are PyTorch [42] and
Pytorch-lightning [43]. PyTorch is an optimized machine learning library for deep
learning using Graphical Processing Units (GPUs) and Central Processing Units
(CPUs). We chose PyTorch because the syntax is easy to read, and it is more pythonic
than Tensorflow. Moreover, we considered the introductory tutorials of PyTorch to
be well written, which makes the whole library more accessible. Another reason for
this choice was the increasing popularity of the PyTorch framework in recent years.
The reason we use Pytorch-lightning is that it is primarily used to remove a lot of
the boilerplate code required by Pytorch for the training and testing of the models.
It also allows to easily add support for multiple GPUs, different visualization and
logging libraries, and training and testing to be run deterministically.

MET’s last big library is Torchvision [44], which is the Pytorch library dedicated
to computer vision tasks. The library contains multiple pretrained models for vision
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tasks and several popular datasets. It also allows for easy manipulation with custom
vision datasets through its API.

Other important libraries that are used in MET are FoolBox [45, 46] and Mimicry
[47]. The FoolBox library implements multiple evasion attacks, and it has a good
performance in terms of speed and creating adversarial samples. We used the FoolBox
library for some of the attacks that use adversarial training based on evasion attacks
(e.g., BlackBox attack, ActiveThief attack), and implementing these attacks is out
of the scope for this thesis.

The mimicry library is used because the BlackBox ripper attack requires a GAN
or a VAE to function. MET provides support for pretrained GANs models from the
Mimicry library, which aims to provide easy reproducibility of GAN research and
has several pretrained ones.

4.3 Example Usage of MET

Before describing the implementation and structure of MET in more detail, we
present a step-by-step example of how to use the tool. We go over how to import
and initialize the tool, configure the attacks, make arbitrary models and datasets
compatible with the tool, and finally, how to run the attack.

The basic steps of using the tool are the following:..1. Import the desired attack and VictimModel, TrainableModel wrapper classes...2. Make the datasets and models compatible with the PyTorch API...3. Wrap the victim model into the VictimModel class and the substitute model
into the TrainableModel class...4. Initialize and configure the attack...5. Run the attack.

As an example, we shall use the Ember dataset [48] and the model that accompanies
the dataset. Ember is a dataset for training ML models to detect malicious Windows
portable executable files. It has 800, 000 training samples (300, 000 malicious,

35



4. Model Extraction Tool...................................
300, 000 benign, 300, 000 unlabeled) and 200, 000 test samples (half malicious, half
benign) [48].

As a victim model fv we use the LightGBM [49] model that is provided as a
baseline for Ember and is trained on the labeled samples of the dataset. For the
substitute model fs we shall use a DNN implemented in PyTorch.

Finally, the attack in our example is ActiveThief with the k-center method. For
the adversary dataset Da, we shall use the unlabeled samples from the Ember dataset.
To test the performance of the substitute and victim models, we use the test samples
from Ember. The example is also provided as part of the tool and can be found
under the experiments folder in gbm_ember2018.py script.

4.3.1 Necessary Preparations Before Using MET

To use MET the user first has to import one of the available attacks. Additionally,
they need to import the VictimModel and TrainableModel classes, which are wrapper
classes used to make the victim and substitute models compatible with MET. The
code showing the imports is depicted in Figure 4.1.

from met.attacks import ActiveThief
from met.utils.pytorch.lightning.module import (

TrainableModel,
VictimModel,

)

Figure 4.1: Example of basic imports for MET.

Afterwards, the user must prepare the test set Dt and the thief dataset Ds.
The only requirement to create a custom dataset compatible with the tool is to
make the dataset compatible with PyTorch. There are multiple ways of how
this can be done. The user may create a custom dataset class from scratch that
is a subclass of torch.utils.data.Dataset. If the user’s dataset contains im-
ages, the user can also use one of the generic data loader classes from Torchvision
torchvision.datasets.ImageFolder and torchvision.datasets.DatasetFolder.

In the case of the Ember dataset, which we load using NumPy, we can use the built-
in NumpyDataset class in MET, which offers mapping from a NumPy dataset to a Py-
Torch dataset. The NumpyDataset class can be found in met.utils.pytorch.datasets.
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The whole conversion of the Ember dataset into a compatible dataset with MET is
shown in Figure 4.2.

# Load training set
X_train_path = Path(data_dir).joinpath("X_train.dat")
y_train_path = Path(data_dir).joinpath("y_train.dat")
y_train = np.memmap(y_train_path, dtype=np.float32, mode="r")
N = y_train.shape[0]
X_train = np.memmap(

X_train_path,
dtype=np.float32,
mode="readwrite",
shape=(N, 2381),

)
# Read unlabeled samples
train_rows = y_train == -1
X_train = X_train[train_rows]
y_train = y_train[train_rows]

# Load test set
X_test_path = Path(data_dir).joinpath("X_test.dat")
y_test_path = Path(data_dir).joinpath("y_test.dat")
y_test = np.memmap(

y_test_path,
dtype=np.float32,
mode="readwrite",

).astype(np.int32)
N = y_test.shape[0]
X_test = np.memmap(

X_test_path,
dtype=np.float32,
mode="readwrite",
shape=(N, 2381),

)

adversary_dataset = NumpyDataset(X_train, y_train)
test_set = NumpyDataset(X_test, y_test)

Figure 4.2: Conversion of Ember dataset into compatible dataset for MET.

The next step is to prepare the victim and substitute models. For a victim model
to be compatible with the tool, the user only needs to make sure that it is compatible
with PyTorch’s API. What this means is that the model should be wrapped in the
class which inherits from torch.nn.Module and implements the forward method,
which takes a PyTorch tensor as input and returns a PyTorch tensor as output. An
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example of using an example of the conversion of a LightGBM victim model into a
PyTorch model is presented in Figure 4.3. As for the substitute model, it must be
a PyTorch model and return the raw logit output. An example of PyTorch model
that we are using in the example is in Figure 4.4.

class Ember2018(nn.Module):
def __init__(self, model_dir: str, seed: int):

super().__init__()
model_file = str(Path(model_dir)

.joinpath("ember_model_2018.txt"))
self.ember = lgb.Booster(

params={"seed": seed},
model_file=model_file,
)

def forward(self, x: torch.Tensor) -> torch.Tensor:
input_ = x.detach().cpu().numpy()
y_preds = self.ember.predict(input_)
y_preds = y_preds.astype(np.float32)
return torch.from_numpy(y_preds).to(x.device)

Figure 4.3: Example transformation of LightGBM Ember model into PyTorch model.

class EmberSubsitute(nn.Module):
def __init__(self, scaler, return_hidden=False):

super().__init__()
self._layer1 = /***/
/***/
self._final = /***/
self._scaler = scaler

def forward(self, x):
x_scaled = self._scaler.transform(

x.cpu().numpy()).astype(np.float32)

/***/

logits = self._final(hidden)
return logits

Figure 4.4: Substitute model used in Ember example. We are showing only abbreviaton
of the model.

Once the model classes have been defined, both the victim and substitute models

38



..................................4.3. Example Usage of MET

can be wrapped into the VictimModel and TrainableModel classes, respectively.
The VictimModel class supports multiple different output types specified through a
parameter, namely: one-hot, logits, labels, probability, and rounded. The Trainable-
Model class requires that the loss function and the optimizer are passed as arguments
for the training of the substitute model. Figure 4.5 shows the initialization of the
wrapper classes.

ember_model = Ember2018(args.ember2018_model_dir, args.seed)
victim_model = VictimModel(ember_model, NUM_CLASSES, "raw")

ember_substitute = EmberSubsitute(scaler)
substitute_model = TrainableModel(

ember_substitute,
NUM_CLASSES,
torch.optim.Adam,
torch.nn.BCEWithLogitsLoss(),

)

Figure 4.5: Use of the MET wrapper classes for both victim model and substiute model.
The "raw" parameter in VictimModel class is the option to return the unmodified victim
model’s output.

4.3.2 Attack Initialization and Execution

After the models and datasets are in a compatible format, the only thing left to do
is to call the attacks themselves. All attacks are located inside mef.attacks. Each
attack requires for its initialization the victim and substitute models wrapped in
VictimModel and SubstituteModel classes, respectively. The rest of the parameters
depend on the type of attack.

The parameters of the attacks also contain settings related to the training of the
substitute model and settings for the tool itself. These settings and attack settings
can also be accessed through the settings classes ( AttackSettings, BaseSettings,
TrainerSettings), which are accessible as attributes of each attack.

Finally, the attack can be called using the __call__ method, which expects
datasets as input in the following order: the adversary dataset, followed by the
test set. Optionally, the validation set can also be passed as a third argument. In
Figure 4.6 we show the initialization and configuration for the ActiveThief attack
together with a call to start the attack.

While running, the attacks create and update a log file. The log file contains both
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attack = ActiveThief(

victim_model,
substitute_model,
args.selection_strategy,
args.iterations,
args.budget,

)

/***/

# Accesssing settings through attack's attributes
# Trainer settings
attack.trainer_settings.training_epochs = args.training_epochs
attack.trainer_settings.precision = args.precision
attack.trainer_settings.use_accuracy = args.accuracy

# Start the attack
attack(adversary_dataset, test_set)

Figure 4.6: Initialization of ActiveThief attack. In this example we show both ways of
accesing the settings of the MET and the attack, i.e., through attributes of the attack
class or as arguments during initialization.

details about the attack and the final results of the attack. The log is saved to the
specified save location, which by default is ./cache.

The final substitute model created by the attack can be found in the substitute
folder in the final_substitute_model.pt file. The file contains the state dictionary
of the substitute model, allowing its easy distribution and deployment.

Finally, every attack also comes with built-in support for python’s argparse
module, which can be accessed through the get_attack_args method. This allows
easy creation of scripts with all of the possible settings of the attack accessible
through the Command Line Interface (CLI). The example call from the CLI for the
gbm_ember2018.py script with the ActiveThief attack is shown in Figure 4.7.

python gbm_ember2018.py \\
--selection_strategy k-center \\
--gpu 0 --save_loc "./cache/ember2018/" \\
--batch_size 256 --budget 20000 \\
--iterations 10 --num_workers 16 ...

Figure 4.7: Example of accesing the ActiveThief arguments through CLI. Every attack
has builtin support for Python’s argparse module allowing easy access to all the settings
through CLI.
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4.4 Design

In the following section, we present a high-level overview of the MET’s structure
and its most essential parts in detail. The design of the tool focuses primarily on
model extraction attacks. We originally planned for MET to automatically do all the
necessary compatibility conversions for both models and datasets design. However,
this proved to be too unsustainable. It forced us to focus more on automation
than on the implementation of the attacks. As such, our final design is much more
minimalistic and straightforward. It contains only the essential parts needed to
run and test model extraction attacks. It also offers some additional utility classes
and functions to make running of the user’s experiments easier e.g., classes for
popular datasets and popular model architectures. It requires that the user does the
necessary preprocessing of both models and datasets to make it compatible with
MET.

4.4.1 Structure

The tool is separated into multiple parts, which are visualized in the high-level tree
view of the MET folder structure in Figure 4.8.

met

attacks

utils

pytorch

datasets

vision

lightning

models

generators

vision

Figure 4.8: MET folder structure

The code is structured in an intuitive way and is easy to follow and use. A brief
description of each part of the tool is as follows:

. met.attack - Main part of the whole module containing all model extraction
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attacks.

. met.utils - Folder containing utility functions and classes, which make it easier
to perform experiments and to make the models compatible with the tool.

. met.utils.pytorch - Utility functions and classes dedicated to PyTorch frame-
work.

. met.utils.pytorch.datasets - Provides PyTorch compatible datasets, which
can be used for experiments. Currently, only computer vision datasets are
provided.

. met.utils.pytorch.lightning - Contains classes, which are based on Pytorch-
lightning library.

. met.utils.pytorch.models - Model zoo currently containing some popular
models and generators related to computer vision.

In the following sections we provide detailed descriptions of the most impor-
tant parts in the current version of the tool that are located in the met.attacks
and met.utils.pytorch.lightning modules. We will focus specifically on the
MetModel and AttackBase classes which form the core of the whole tool.

4.4.2 AttackBase Class

All implemented attacks inherit from a class called AttackBase and that is intended
to be used as basis for all attacks. It is an abstract class, which contains some
already implemented methods that are useful in all different attacks (e.g., substitute
model training, model testing, calculating the performance of the attack). This
way, the attack class needs only to contain code specific for that attack. The class
itself abstracts from the attacks most of the utility classes and methods provided by
the tool, which means it is not necessary to know them in detail to implement a
new attack. The AttackBase class Unified Modeling Language (UML)1 diagram is
depicted in Figure 4.9. Since the whole UML class diagram of the tool is too big to
fit into the document, we will be presenting only parts of it.

1https://www.uml-diagrams.org/class-diagrams-overview.html
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Base

+ attack_settings: None
+ base_settings: BaseSettings
+ trainer_settings: TrainerSettings
- _logger:  logging.Logger
- _test_set: torch.utils.data.Dataset)
- _thief_dataset: torch.utils.data.Dataset)
- _victim_model: VictimModel
- _substitute_model: TrainableModel

- _add_base_args(parser: argparse.ArgumentParser):None
- _add_trainer_args(parser: argparse.ArgumentParser):None
- _get_attack_parser(): argparse.ArgumentParser
+ get_attack_args(): argparse.ArgumentParser
- _train_substitute_model(train_set:Dataset, val_set:Optional[torch.utils.data.Dataset)], 
iteration:Optional[int]): None
- _test_model(model:Union[TrainableModel, VictimModel], test_set:torch.utils.data.Dataset)): float
- _get_test_set_metrics(): None
- _get_aggreement_score(): None
- _save_final_substitute(): None
- _get_predictions(): None
- _finalize_attack(): None
+ __call__(*args, **kwargs): None
- _run(*args, **kwargs): None

TrainerSettings

+ training_epochs: int
+ patience: int
+evaluation_frequency: int
+ precision: 32
+ use_accuracy: bool

1

BaseSettings

+ save_loc: Path
+ gpu: bool
+ num_workers: int
+ batch_size: int
+ seed: int
+ deterministic: bool
+ debug: bool 

1

Figure 4.9: UML representation of AttackBase class

From the class diagram, we can see that most of the methods and attributes
are quite self-explanatory from their given names. The ones that need a more
detailed explanation are _thief_dataset, base_settings and trainer_settings
attributes. The _thief_dataset represents the Ds used by the adversary for model
extraction attacks. As for the other two, they contain instances of the BaseSettings
and TrainerSettings classes respectively, which encapsulate the general settings
of the tool and the settings related to substitute model training.
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The methods which are required to be implemented by each attack are _run and

_get_attack_parser. The former is called in __call__ method and should contain
the attack’s main loop as for the latter method, it is used to initialize the argument
parser with the parameters of the attack for use in the CLI.

4.4.3 MetModel Class

The second most important class of the tool is the MetModel class. It is a parent
class to both TrainableModel and VictimModel, which are used throughout the
tool. They contain the substitute model fs and the victim model fv that the user
provides together with relevant information about them. The intention with these
classes is to have all the necessary information and functionality of the models in one
place. The class is based on Pytorch-lightning’s LightningModule, which is based
on PyTorch normal torch.nn.Module class with additional methods and options.

The way Pytorch-lightning works is that it abstracts away the writing of the
training, testing, and validation loops, which is normally necessary to implement in
PyTorch. The only thing that needs to be implemented is the relevant training, test,
and validation step in the model class which inherits from LightningModule.

The MetModel class only implements the general validation step and both the
MetModel and TrainableModel implement that _shared_step_output that does
the necessary preprocessing of the model output. The class also contains the prepared
F1-macro and accuracy metrics for model testing and training.

In the case of the VictimModel the class also offers built-in output formatting,
which consists of sigmoid, softmax, labels, one_hot and for unmodified output
logits and raw options. This gives the user the ability to test the attacks with
different victim models output types. As for the TrainableModel it contains the
implementation of the general supervised learning training step. Thanks to the
flexibility of Pytorch-lightning the training step can be easily modified to support an
arbitrary training regime. The UML representation of MetModel class is represented
in Figure 4.10, together with both TrainableModel and VictimModel.

44



......................................... 4.4. Design

VictimModel

+ output_type: str

- _transform_output(output: torch.Tensor): torch.Tensor
+ forward(x: torch.Tensor): List[torch.Tensor]
- _shared_step_output(x: torch.Tensor): torch.Tensor

TrainableModel

+ optimizer: Callable
- _loss: Callable
- _lr_scheduler: Callable
- _batch_accuracy: bool

- _output_to_list(output: torch.Tensor): List[torch.Tensor]
+ forward (x: torch.Tensor): List[torch.Tensor]
- _shared_step_output(x: torch.Tensor): torch.Tensor
+ training_step(batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int): torch.Tensor
+ configure_optimizers(): Union[torch.optim.Optimizer, Tuple[List[torch.optim.Optimizer], List[Callable]]

_MetModel

+ model: torch.nn.Module
+ num_classes: int
- _val_accuracy: torchmentrics.Accuracy
- _f1_macro: torchmetrics.F1
+test_labels: torch.Tensor

+ cuda(): None
- _shared_step_output(x: torch.Tensor): torch.Tensor
+ validation_step(batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int): 
torch.Tensor
+ test_step(batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int): 
torch.Tensor
+ test_epoch_end(test_step_outputs: List[torch.Tensor]): None

Extends

Extends

Figure 4.10: UML representation of MetModel class
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4.5 Comparison with Other Tools

There are a few other libraries online which implement model extraction attacks.
This section is dedicated to the comparison of these libraries with MET. The libraries
we will discuss are Adversial Robustness Toolbox (ART) [8] and PrivacyRaven [9].

ART is a huge library dedicated to Machine Learning security and privacy. It
implements model extraction attacks and other privacy and security attacks such
as inference attacks, poisoning attacks, and evasion attacks. It also supports all
popular frameworks, dataset types, and Machine Learning tasks. When it comes to
model extraction attacks, ART provides implementations of the Copycat attack [27],
KnockOff nets [5] and the Functionally Equivalent Extraction [3].

The PrivacyRaven serves a similar purpose as ART, but unlike ART, which
implements both privacy and security attacks, PrivacyRaven focuses only on privacy
ones. When it comes to model extraction attacks, the currently implemented attacks
are the CopyCat attack and partially the CloudLeak attack [28]. The library
internally uses ART for evasion attacks and some utility functions.

In terms of implemented attacks, both tools implement the CopyCat attack, which
is the basic model extraction attack that can be performed, i.e., the adversary
queries Da to the victim model. While the KnockOff-Nets implementation in MET
is based on the implementation available in ART but our implementation is more
comprehensive and closer to the original paper. MET supports a variable number of
samples during online training when using the adaptive strategy. It also prevents
selecting the same samples during online training, and adaptively changes the number
of possible actions when there are no more samples for some actions.

The Functionally Equivalent Extraction attack [3] which is only implemented
in ART is limited to attacking simple NN architectures and does not meet our
requirements as mentioned in Section 3.2. We also considered implementing the
CloudLeak attack, but the paper introducing the attack was missing information
about the test settings. We contacted the authors to obtain the missing details,
but did not get a response from them. Overall, MET implements additional model
extraction attacks, which are not available in either of the other libraries and
improves existing implementations. To the best of our knowledge, we currently have
the largest number of implemented model extraction attacks in one single tool.
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Chapter 5

Verification of Implemented Attacks

This chapter compares the MET attacks’ results to the original papers set-ups to
confirm the implementations’ correctness. We performed this comparison to test
that the MET is indeed working correctly and that our implementations of the
attacks show similar results to the ones reported by the authors. We provide all the
necessary details to reproduce each experiment with MET. We ran all experiments
on a PC with Intel I9-9900K CPU, an NVIDIA TITAN V GPU, and 32GB of RAM,
running Ubuntu 18.04.5 LTS with CUDA Toolkit 11.03 installed.

We selected a single experiment setting from each corresponding paper to com-
pare the performance between our implementation of the attacks and the original
implementations. The reason for selecting only one experiment from each paper was
time constraints since some attacks take a relatively long time to perform. We also
wanted to have an equal number of comparisons for each attack. In the following
subsection, we provide information for each comparison.

We omit the comparison for the CopyCat attack. The CopyCat attack is based
on querying the victim model fv with the samples from the adversary dataset Da

and using the predictions as labels for the synthetic dataset. The querying and
training parts of the code are used by multiple attacks and are tested thoroughly.
In addition, our code is quite similar to the original implementation that was also
written in Pytorch. Finally, the experiments in the original paper that would have
been used as a baseline for the verification require a large adversary dataset that was
very hard to collect and test under the current time constraints. For these reasons,
we chose to omit the comparison and extensive verification of the CopyCat attack.
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Figure 5.1: DNN architectures used in comparison experiments for ActiveThief attack.
The Convolution-3x3-s1-p1-32 means a convolution layer with 3 × 3 kernel, stride of
1, padding of 1 and 32 output channels. FC stands for fully connected layer and the
number represents number of output neurons.

5.1 Reproducibility of Results

Each of the experimental settings we mention in the following subsections has a
corresponding script located in the examples_paper folder of the MET tool, which
can be used to replicate our results easily. Each script provides CLI interface
to modify the settings of the attack and contains a hardcoded seed for random
generators, which is used for deterministic creation of datasets, model training, and
attack execution.

5.2 ActiveThief Attack

For comparison, we selected the Cifar10 [33] dataset experiment from the respective
work. In the original paper, the authors use a subset of 120, 000 samples from the
ImageNet [35] dataset as the adversary dataset Da. Unfortunately, they do not
provide information about the exact subset they used. We chose a subset of the
same size as the one reported by the authors in the paper. We created our Da by
taking the 120 samples from each of the 1000 classes of the ImageNet dataset. For
the model architecture, they used a custom CNN architecture. The architecture is
depicted in Figure 5.1.

48



.....................................5.3. BlackBox Attack

Method Victim Test Acc. Substitute Test Acc. Test Agreement

MET Original MET Original MET Original
Random 80.8% Unknown 61.9% Unknown 66.8% 71.38%
Entropy 80.8% Unknown 61.8% Unknown 67.0% 72.99%
k-center 80.8% Unknown 64.3% Unknown 68.6% 72.97%
DFAL 80.8% Unknown 62.6% Unknown 67.6% 71.52%
DFAL+k-center 80.8% Unknown 62.9% Unknown 68.2% 73.47%

Table 5.1: Table with results for our implementation of the ActiveThief attack compared
to the results reported in the original paper. Unknown represents values which the
authors did not report in the original paper.

Both victim and substitute models are trained with the Adam optimizer with the
default parameters of 1,000 epochs. Early stopping was used, and it was set to the
patience of 100 epochs and a batch size of 150. The attack’s initial seed size is 10%
of the budget, and the validation set size is 20% of the budget. The budget is set
to 20, 000 queries, and each active learning method uses the authors’ recommended
settings. The attack’s performance is tested on the test set of the Cifar10 dataset.
The comparison results can be seen in Table 5.1.

The results achieved using our implementations follow a similar pattern to the
original baselines. The different attack methods beat simple random strategies and
create substitute models with higher test accuracy and test agreement. However,
the results achieved by our implementation are slightly lower than those reported
in the original papers. We hypothesize that this discrepancy could be caused by
the difference in the adversary datasets, initialization of model weights, and slight
differences in the model architectures. In addition, to ensure that our implementation
of active learning techniques in the ActiveThief attack is correct, we tested them in
various active learning scenarios against other implementations available online.

5.3 BlackBox Attack

For the BlackBox attack, we did not use any of the experiment settings from the
original paper. Instead, we used the attack settings from the paper Protecting
against DNN Model Stealing Attacks (PRADA) [29], where the authors used the
BlackBox attack to test the performance of their proposed defense against model
extraction attacks. The reason is that the original paper experiments descriptions
omitted some of the necessary information for easy reproduction, e.g., victim model
architecture in case of the MNIST [31] experiment, dataset modification in case of the
GTSRB [32] experiment. In the PRADA paper, the authors performed experiments
with the attack on the MNIST dataset. We use their experimental settings and
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Figure 5.2: DNN architectures used in comparison experiments for BlackBox attack.
The Convolution-3x3-s1-p1-32 means a convolution layer with 3 × 3 kernel, stride of
1, padding of 1 and 32 output channels. FC stands for fully connected layer and the
number represents number of output neurons.

Method Victim Test Acc. Substitute Test Acc. Test Agreement

MET Original MET Original MET Original
No synthetic samples 99.2% ±99% 85.1% Unknown 85.2% Unknown
Synthetic samples 99.2% ±99% 98.2% Unknown 98.6% ±96%

Table 5.2: Table with results for our implementation of the BlackBox attack compared
to the results reported in the original paper. Unknown represents values which the
authors did not report in the original paper. ± is used for values, which are not reported
as a number but only displayed as a symbol in a chart in the original papers without
value.

results to compare our implementation of the attack. The used model architecture
is depicted in Figure 5.2. The attack ran for 10 iterations. In each iteration, the
substitute model was trained for 100 epochs with a batch size of 64. The lambda
for the Jacobian augmentation was set to 64/255. The adversary dataset Da was
created by taking 10 samples from each class from a subset of the training set of
the MNIST dataset, which was not used for the training of the victim model. To
see the benefit of using synthetic samples, we also ran an attack with only the seed
samples without the Jacobian augmentation. We report the results in Table 5.2.

The BlackBox attack implemented in MET with synthetic samples successfully
creates a substitute model which achieves almost 99% test agreement with the victim
model and achieves better results than the one reported in [29]. We can also see that
the substitute model trained with synthetic samples achieves better results than
the model trained with only seed samples. However, one must remember that the
attack without synthetic samples uses only 100 samples. Still, the substitute model
achieves almost 90% test accuracy and test agreement. This shows that the MNIST
dataset is too easy to be used in model extractions experiments since with relatively
simple CNN architecture and a small number of PD samples, it is possible to create
a substitute model with good performance.
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5.4 BlackBox Ripper Attack

For the BlackBox ripper attack, we selected the experiment on the FashionMNIST
[50] dataset from the paper as a baseline. The authors use LeNet [51] as the victim
model and Half-LeNet as the substitute model. For the generator component, the
authors used SNGAN [52] which was trained on the Cifar10 dataset. We did not
use their implementation of SNGAN in our experiment. Instead, we used the
implementation provided by Torch-Mimicry and their pretrained weights on Cifar10
available for SNGAN. We use the Torch-Mimicry library since their implementations
of GAN are thoroughly tested and are available with multiple pretrained weights.

Both the victim and substitute models are trained for 200 epochs with the Adam
optimizer with default settings and the batch size set to 64. We want to note one
difference between our experiment settings and the original one. Each epoch of
substitute training consisted of 1, 000 batches of generated images for both the
random strategy and the evolutionary strategy in the paper. In our case, to save
time, we used only 100 batches per epoch for the evolutionary method and 1, 000
batches per epoch for the attack using a random strategy for generating images. The
performance of the attack is tested on the test set of the FashionMNIST dataset.
We report the results of the comparison in Table 5.3.

Method Victim Test Acc. Substitute Test Acc. Test Agreement

MET Original MET Original MET Original
Random 89.7% 89.9% 81.3% 80% 82.2% Unknown
Optimized 89.7% 89.9% Unknown 82.2% Unknown Unknown
Random 1

10th 89.7% 89.9% 73.8% Unknown 74.2% Unknown
Optimized 1

10th 89.7% 89.9% 75.3% Unknown 76.5% Unknown

Table 5.3: Table with results for our implementation of the BlackBox ripper attack
compared to the results reported in the original paper. Unknown represents values
which the authors did not report in the original paper and for which we did not run
the experiments. The 1

10 th represents experiments, where only one-tenth of the original
budget from the paper was used.

The implementation of BlackBox ripper reports better results for the random
strategy than the original. As for the optimized method, we can see that the attack
reports a similar trend as in the results in the original paper. The optimized method
with an evolutionary algorithm creates a better substitute model than the random
method. It is also worth pointing out that the test accuracy of the substitute models
created with only 1

10th of the budget is only worse by ±6% while using 11, 520, 000
fewer samples.
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5.5 KnockOff-Nets Attack

For the KnockOff-Nets attack, we chose the Caltech256 [39] dataset experiment
from the original paper. One thing to note is that the original paper leveraged
the hierarchical structure of ImageNet to create the adversary’s dataset Da for
their experiments. We do not perform experiments with this structure and instead
perform experiments in the attack setting that the authors call adaptive-flat.
In this setting, the adversary uses the original labels of the ImageNet dataset. In
the adaptive-flat experiments, we do not use the hierarchical structure since we
argue that such a structure, as in ImageNet, cannot be created for every adversary
dataset. For their experiments with adaptive-flat authors also assume that the
adversary has access to all images on the internet. This meant that Da contained
the training samples from each dataset used in different experiments throughout the
paper. However, since we performed the experiments only on Caltech256, we use
only its training samples in our Da. Our adversary dataset also does not contain
samples from the OpenImages [40] dataset, which the authors also used in their
experiments, since it is a large dataset and its downloading is a very time-intensive
task.

The victim model and the substitute model use the ResNet34 [19] architecture
with pretrained weights on the ImageNet dataset. For our experiments, we used the
implementation available in the TorchVision library. The victim model is trained
with an SGD optimizer for 200 epochs with a 0.1 learning rate and 0.5 momentum,
where the learning rate is decayed by 0.1 every 60 epochs. The substitute model is
trained with an SGD optimizer during online training with a learning rate of 0.0005
and batch size of 4, which is the number of new samples selected each iteration in
the adaptive strategy. Afterward, during offline training, the substitute model is
trained for 100 epochs with an SGD optimizer using a learning rate of 0.01 and
momentum of 0.5 and uses the same learning rate decay as the victim model. The
batch size is set to 64, and the attack performance is measured on the test set of
Caltech256. The optimizer used during the online training uses a small learning rate
since it performs training with only the newly selected samples at each iteration.
We report the results in Table 5.4.

The reported results by MET show lower test accuracy than the results reported
by the authors. The difference is most significant for the random method, which
reports 10% lower test accuracy than the original paper. We speculate that this
discrepancy is a result of the differences in the adversary dataset Da. Even with
these discrepancies, our results show the same trend that the original paper shows.
The adaptive method using the reinforcement learning approach creates a substitute
model with better test accuracy and test agreement than the simple random method.
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Method Victim Test Acc. Substitute Test Acc. Test Agreement

MET Original MET Original MET Original
Random 77.8% 78.8% 61.2% ±71% 63.0% Unknown
Cert 77.8% 78.8% 68.1% ±73% 68.1% Unknown
Div 77.8% 78.8% 67.3% ±73% 67.8% Unknown
Loss 77.8% 78.8% 65.9% ±73% 66.3% Unknown

Table 5.4: Table with results for our implementation of the KnockOff-Nets attack
compared to the results reported in the original paper. Unknown represents values
which the authors did not report in the original paper and for which we did not run
the experiments. ± is used for values, which are not reported as a number but only
displayed as a symbol in a chart in the original papers without value.

5.6 Discussion of the Results

Apart from the KnockOff-Nets attack, all other attacks report very similar results to
the original papers. KnockOff-Nets results are further apart, but even the random
method is much lower. The original paper reports improvements of only 2% compared
to the adaptive technique while MET shows a much bigger improvement. Overall
the results achieved by MET follow a similar pattern to the results in the original
papers, in all implemented attacks. The various techniques create substitute models
with better test accuracy and test agreement than a simple random method. As
such, we conclude that our implementations of the attacks are correct.
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Chapter 6

Comparison of Implemented Attacks

None of the publications or papers on model extraction attacks presents a compre-
hensive comparison of different attack techniques in the same experimental settings.
In this chapter, we hope to rectify this by showing the results of multiple experiments
for all implemented attacks in MET tool. We set multiple goals for the experiments
that allow us to compare the performance of individual attacks under variable
settings. The experiments aimed to examine the influence of different factors on
the attacks, such as the victim model output, the adversary dataset, or the target
domain of the victim model. To this end, the experiments were divided into multiple
parts, where each experiment tests the impact of a single factor:

. Comparison of attacks on the most popular datasets used in various papers.. Influence of the victim model’s output on the performance of the attack.. Influence of the adversary dataset diversity on the attacks.

In each setting, we aimed to test all possible variations of attacks implemented in
MET to make the fairest comparison and to locate possible areas for improvement.
As already mentioned, the primary focus is on image classification problems since
they are the most prevalent problem task in model extraction papers [2]. However,
we also performed experiments in a more cybersecurity-related domain with the
Ember2018[48] malware dataset to test the applicability of the attacks in other
domains. As mentioned in 3.3 for each attack, we present both test accuracy and
test agreement metrics. Additionally, we present the running time of each attack.
This metric is often overlooked, but it is crucial since there is a possible scenario
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where the adversary needs to copy the victim model as fast as possible before it is
updated or changed.

We also considered additional important experiments testing other factors, which
we were unable to conduct due to time constraints but plan to do in the future. We
list them for completeness here:

. Scaling of the attacks in terms of adversary dataset size.. Influence of the subset model architecture on the attacks.. Performance and scaling of the attacks on harder image classification datasets.. Performance of the attacks on non-image classification tasks.. Influence of victim model’s training regime on the attacks.

6.1 Adversary Capabilities

Following the threat model described in Section 3.1 and the attack requirements
presented in Section 3.2, we consider attackers with the following capabilities: the
adversary has only black-box access to the victim model fv, and they do not know the
exact training dataset used to train the victim model. The only information they have
access to is the predictions returned by fv. However, we assume that the adversary
has knowledge about the target domain and can collect related data samples for
the creation of the adversary dataset. For all different types of experiments, we will
provide additional details for the adversary dataset Da.

6.2 Common Experiment Setup

If not stated otherwise, all experiments used the following setting: The victim model
is trained for 200 epochs with the SGD optimizer, the learning rate set to 0.1,
and with Nesterov momentum set to 0.9. The learning rate decayed by 0.1 every
60 epochs. As for the substitute model, Adam optimizer was used with default
parameters for 100 epochs. For both models, the batch size was set to 150 samples.
The seeds for all random generators used in the tool and the generation of dataset
subsets were 200, 916 and 201, 096. We understand that it would be better to run
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the experiments with more seeds, but time constraints did not allow us to perform
experiments with more than two seeds, as the number of different methods needed
to be tested is quite substantial.

For both the victim model and substitute model, we use SimpleNet [53]. The
decision for using SimpleNet is based on its good performance, easy-to-implement
architecture with a relatively small number of parameters, and most importantly,
because it works well both on high and smaller resolution images. The code used for
all experiments is located in the experiments folder in the attack_tests.py file.

The recommended settings by the authors for all attacks were used as the default
parameters in MET except for the k-center strategy in ActiveThief. For the k-center
attack, we used five centers per iteration instead of one because otherwise, the
strategy was extremely slow. For most of the attacks, the experiments were run
with a query budget of 20, 000 samples. This number was chosen both because of
each attack’s running time and because we consider an adversary which aims to use
as few queries as possible to copy the victim model while minimizing the cost of the
attack.

The only exception to the query budget was when performing the BlackBox ripper
attack. It is difficult to easily report the actual budget of the attack since the
evolutionary algorithm performs a variable number of queries for each generated
sample. In addition, for the current implementation of the BlackBox, ripper in MET
the budget is calculated from the number of epochs, the batch size, and the number
of batches per iteration, which the user has to specify. This restricts the attack
budget in our settings (i.e., 100 epochs, 150 batch size) to a budget size of either
15, 000 or 30, 000. We chose the former since it leaves room for additional queries
made by the evolutionary algorithm.

Additionally, for each experiment, we also performed a CopyCat attack using
the whole adversary dataset Da to show the best possible result the adversary
can achieve in the given scenario. Similarly, for each experiment, we also ran the
BlackBox ripper with a budget set to the size of the adversary dataset to see how
good is the performance when using only generated Non-Problem Domain Synthetic
samples compared to Non-Problem Domain Natural samples. These attacks are
represented as BlackBox ripper: Random All and BlackBox ripper: Optimized All
respectively, in the results.

57



6. Comparison of Implemented Attacks.............................
6.3 Baseline Experiments on the Most Popular
Datasets

For this experiment, we chose the following target datasets: Cifar10 [33], Fashion-
MNIST [50], and GTSRB [32]. Except for FashionMNIST, each of these datasets
is repeatedly used in the model extraction papers to test the performance of the
attacks. We used FahsionMNIST because it is often used as a direct replacement
for MNIST [31] dataset, another very popular dataset in model extraction attack
papers. However, we did not want to use the simple version of MNIST since it is
too easy. Both classic ML algorithms and convolutional networks can easily achieve
excellent results on MNIST, while this is not the case for FashionMNIST. Details
for each of these datasets are presented in Table 6.1. The results of this experiment
are used as the baseline for the comparisons with other experiments.

Dataset Classes Number of training samples Number of test samples

GTSRB 43 39,209 12,630
Cifar10 10 50,000 10,000
FashionMNIST 10 60,000 10,000

Table 6.1: Details of popular datasets in model extraction attacks.

6.3.1 Experiment Setup

For the adversary dataset Da, we used a subset of ImageNet dataset similar to the
one used in [10] of 120 thousand samples, which is approximately one-tenth of the
whole ImageNet dataset. We took 120 samples from each of the 1, 000 classes from
the train split to create the dataset. In the case of Cifar10, since ImageNet contains
classes that correspond to the Cifar10 classes, we selected 31 samples from 10 of
these classes (plane, sports_car, hummingbird, tiger_cat, water_buffalo, appenzeller,
bullfrog, sorrel, speedboat, trailer_truck). Both the adversary and training datasets
are resized to resolution 32× 32 and normalized into range [−1, 1]. For the BlackBox
ripper attack, we chose SNGAN from Torch-mimicry as the generator, which was
trained on ImageNet and has an output resolution of 32× 32. Except for Cifar10, we
do not perform any data augmentation on the dataset. For Cifar10, we performed a
random crop followed by a random horizontal flip on the training set since the test
accuracy of the victim model is better with the augmentation. Finally, all victim
models in this set of experiments return the full probability vector as output.
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Figure 6.1: Final substitute model’s test accuracy and test agreement for baseline
experiment on Cifar10. K stands for 1000. BlackBox ripper Random All and Optimized
All represents attacks with budget set to the size of 120k samples.

6.3.2 Baseline Experiments Results

The results of the experiments are presented in Figures 6.1, 6.2 and 6.3. Additionally,
for each dataset, we show the running time of the individual attacks in Table 6.2.

We can see from the figures that for all datasets that ActiveThief, CopyCat,
and KnockOff-Nets attacks show the best results overall and the results are quite
similar for all variations of these three attacks. Even in the Cifar10 dataset, which
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Figure 6.2: Final substitute model’s test accuracy and test agreement for baseline
experiment on FashionMNIST.

is the hardest dataset of the three, the attacks can create a substitute model with
performance close to the substitute created with the whole dataset.

For all datasets, the BlackBox attack performs worse than the rest of the attacks,
except for BlackBox ripper attacks with a limited query budget. In prior work [24,
29, 21], the BlackBox attack was always used with seed samples from the same
distribution as the training samples of the victim model. As far as we know, the
attack was not tested in a more realistic scenario. In our case, we are testing the
attacks in an unfavorable setting with only NPDN samples. Regarding GTSRB,
ImageNet does not even contain equivalent classes. Nevertheless, the performance

60



..................... 6.3. Baseline Experiments on the Most Popular Datasets

0 20 40 60 80 100
Test agreement (%)

ActiveThief: Entropy

ActiveThief: K-center

ActiveThief: Dfal

ActiveThief: Dfal+k-center

BlackBox

CopyCat

KnockOff-Nets: Cert

KnockOff-Nets: Div

KnockOff-Nets: Loss

KnockOff-Nets: Cert+Div+Loss

BlackBox ripper: Random

BlackBox ripper: Optimized

BlackBox ripper: Random All

BlackBox ripper: Optimized All

97.2

97.2

96.9

97.5

79.5

96.0

95.8

96.0

95.8

96.3

21.0

26.5

89.8

92.5

GTSRB with Da of 120k samples
Whole Da (98.2 %)

0 20 40 60 80 100
Test accuracy (%)

ActiveThief: Entropy

ActiveThief: K-center

ActiveThief: Dfal

ActiveThief: Dfal+k-center

BlackBox

CopyCat

KnockOff-Nets: Cert

KnockOff-Nets: Div

KnockOff-Nets: Loss

KnockOff-Nets: Cert+Div+Loss

BlackBox ripper: Random

BlackBox ripper: Optimized

BlackBox ripper: Random All

BlackBox ripper: Optimized All

96.4

96.2

96.0

96.5

79.2

95.3

94.9

95.3

94.9

95.7

20.9

26.5

89.2

92.0

GTSRB with Da of 120k samples
Chance (0.02 %)
Whole Da (97.2 %)
Victim model (98.1 %)

Figure 6.3: Final substitute model’s test accuracy and test agreement for baseline
experiment on GTSRB.

of the substitute model created by BlackBox attack is much closer to other attacks
in these two datasets than in the case of Cifar10, despite the fact that for Cifar10,
we used samples from the classes that are closest to the target domain. This clearly
shows that the attack performance depends heavily on the test settings and the
datasets used.

The BlackBox ripper attack shows similar results to the BlackBox attack when
used with a limited budget of 20, 000 samples. However, if the budget is increased
to the size of the ImageNet adversary dataset, the substitute model performance
increases significantly both for the Random method and the Optimized method.
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Attack Method Time

Cifar10 FashionMNIST GTSRB

ActiveThief

Entropy 1:48:47 3:07:52 1:54:35
K-center 2:48:53 3:48:48 2:58:19
DFAL 3:55:07 5:43:47 4:59:45

DFAL + k-center 5:44:39 5:29:35 5:57:24

BlackBox 0:21:39 0:21:40 0:22:43

CopyCat 0:15:27 0:18:20 0:18:52
All 1:24:37 1:40:59 1:42:49

KnockOff-Nets

Cert 2:31:13 2:36:50 2:55:49
Div 2:31:02 2:53:45 3:04:22
Loss 2:30:30 2:50:38 3:01:18

Cert + Div + Loss 2:30:25 2:50:41 3:06:10

BlackBox ripper

Random 0:00:37 0:00:37 0:00:38
Optimized 0:15:45 0:32:28 0:53:16
Random All 0:03:50 0:03:50 0:03:52
Optimized All 2:05:21 5:14:23 7:03:36

Table 6.2: Runtime for the model extraction attacks for baseline experiments. The
runtime is represented as Hours:Minutes:Seconds.

Even with a 6× larger query budget, the performance of the BlackBox ripper attack
is still worse than that of CopyCat, KnockOff-Nets, and ActiveThief attacks. From
the results, we can also clearly see the benefit of using the evolutionary algorithm
compared to randomly generated samples in BlackBox ripper attack, creating a
substitute model, with 20% better performance in test accuracy and test agreement
in the case of Cifar10.

As for the KnockOff-Nets and ActiveThief attacks, the performance of these two
attacks is similar in all datasets. There is, however, one trend we can observe.
The KnockOff-Nets attack can achieve the best performance in Cifar10, while the
ActiveThief can achieve better performance for GTSRB and FashionMNIST datasets.
This result is a consequence of the adversary dataset used. The samples from
ImageNet are much closer to the samples contained in Cifar10 than GTSRB and
FashionMNIST. As a result, the confidence of the predictions from the victim model
is lower when using GTSRB and Fashion-MNIST, resulting in a worse feedback
signal for the individual policies in KnockOff-Nets.

Regarding the runtime results of the attacks, CopyCat is the fastest overall attack,
followed by the BlackBox attack. On the other end, the slowest is by far ActiveThief
with the DFAL method. To evaluate its performance with a resolution higher than
32×32, we also performed a test with a resolution of 128×128. From our preliminary
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results with a higher resolution, the DFAL method requires 3 hours to select samples
for the query set. We can expect that its performance would be even worse than
the other methods if we used a higher resolution dataset. From the results, we
can also see that the performance of the KnockOff-Nets attack is the same for all
methods, unlike the ActiveThief, where the running time of each attack strategy
varies greatly. Lastly, in the BlackBox ripper attack, the runtime of the attack varies
greatly between datasets. The reason for this is similar to that of the KnockOff-Nets
attack performance. Since the generator is trained on ImageNet, whose samples are
more similar to Cifar10, fewer queries are necessary for each generated sample than
for the other datasets. In the GTSRB dataset, we can see the extreme case, where
the optimized method has a better substitute model by 0.5% in both accuracy and
agreement, but the running time difference is 7 hours.

Since the performance of the attack follows a similar pattern for all popular
datasets, we will be using only one of the datasets for the following experiments
unless stated otherwise.

6.4 Influence of the Victim Model’s Output on Attack
Performance

The next set of experiments was to test how the victim model’s output influences
the performance of the attacks. We test two scenarios. Firstly, the output precision
of the victims is lowered by rounding the output to one decimal place. Secondly,
the performance of the attack is tested in the more challenging scenario where the
returned output is one-hot encoded.

The settings for these experiments are the same as for the baseline ones, and we
used the Cifar10 dataset as a target dataset. We do not report the results for all
attacks in this experiment. Specifically, we do not show results for KnockOff-Nets
with diversity and certainty rewards. The reason is that both of these rewards
can not be used with the one-hot output. The output does not contain enough
information for these rewards to function correctly, i.e., the certainty reward is
constantly 1, and in the case of diversity, the reward slowly converges to 1. We also
omit the results for the ActiveThief attack with the DFAL method since it is slow
and the performance is similar to the other ActiveThief methods.
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Figure 6.4: Final substitute model’s test accuracy and test agreement for victim model’s
outptut experiment on Cifar10.

6.4.1 Results

The experiment results are presented in Figure 6.4. Immediately, we can see that the
performance of the attacks drops significantly with the less detailed one-hot output.
The drop is most noticeable with the ActiveThief attack, which drops by more than
10% across all of its different methods in both accuracy and test agreement. We
hypothesize that the performance drop is most substantial for ActiveThief because
it is the only attack that uses the substitute model to select samples for querying.
However, since the performance of the substitute is worse with the more coarse output
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of the victim model, it influences the selection of the samples for querying. The
results also show one anomaly in the case of BlackBox ripper with a random version
where the substitute model created with one hot output has better performance than
the rounding one. We, unfortunately, do not have an explanation for this anomaly.

On the other hand, rounding shows a much less profound effect on attack perfor-
mance than one-hot output. Even while limiting the output to one decimal place,
the attacks’ performance is very similar to the substitute models from the baseline
experiment with access to the full output. The drop is again the largest for the
ActiveThief attack, however, this time by maximum ±4%. Surprisingly, in the case
of using the whole adversary dataset Da for the attack, the performance of the
substitute model is the same as for the one created with probability output.

6.5 Influence of the Adversary Dataset on Attack
Performance

Another important thing in the model extraction attacks is the influence of the
adversary dataset Da. There are multiple factors, which can be studied in this case:

. The representation of Problem Domain (PD) and Non-Problem Domain (NPD)
samples in the Da. The size of the Da. The diversity of the Da, i.e., number of classes for classification problems

Initially, we aimed to test the influence of both the size and diversity of Da.
Unfortunately, the experiments with a larger sized Da proved to be too slow,
especially in the ActiveThief attack. Because of time constraints, we tested only the
influence of the adversary dataset with fewer samples and smaller diversity, and we
leave the rest of the tests as future work.

6.5.1 Experiment Setup

The experiment uses the same setup as the baseline experiments. For the adversary
dataset Da, we use the Cifar100 [33] dataset, which contains the same samples as the
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Cifar10 dataset but with more granular labels. Compared to the ImageNet subset
used in baseline experiments, it has 10× fewer classes and half as many samples.
One of the reasons for choosing the Cifar100 was the availability of pretrained GAN
generators needed for the BlackBox ripper attack since the training of GANs from
scratch is a time-intensive task.

6.5.2 Results

The experiment results can be seen in Figure 6.5. Overall, the performance of the
substitute models created by the attack while using the Cifar100 dataset as the
adversary dataset, shows slightly worse results than those created with the ImageNet
subset. However, the BlackBox ripper optimized method and KnockOff-Nets using
all reward methods show opposite results.

BlackBox ripper can create a substitute model with 6% better accuracy and 7%
better test agreement. From these results and the ones in Section 6.4.1, it seems that
there is a factor of randomness in the generation of synthetic samples in the BlackBox
ripper attack influencing the performance of the substitute model. This needs to be
tested more thoroughly in the future to measure the stability of the results of the
BlackBox ripper attack with different generators and adversary datasets.

Regarding the KnockOff-Nets attack, the combination of reward maximizing
the exploitation (i.e., certainty reward) and rewards maximizing exploration (i.e.,
diversity and loss reward) can create a better substitute model, although each of
the methods individually fails to do so. While the results for Cifar100 are lower by
a few percent points, overall, the results are very close for all methods.
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Figure 6.5: Final substitute model’s test accuracy and test agreement for experiment
with different adversary datasts.
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Chapter 7

Attack Improvements

This chapter is dedicated to the improvements proposed for some of the model
extraction attacks that were implemented and tested in MET. From the results of
the experiments, we noticed some shortcomings and places where the performance
of the attacks could be improved. By performance, we mean both the test accuracy
and test agreement of the final substitute model and the runtime of the attack
itself. We separate our proposed improvements according to the model extraction
attacks. Additionally, at the end of this chapter, we also talk about a possible
improvement and possible future research area, which is outside of the implemented
model extraction attacks.

7.1 ActiveThief Attack Improvements

The first attack we focused on was the ActiveThief attack, where there were imme-
diately multiple places that could be improved. The first problem identified was the
runtime of the attack, specifically in the k-center strategy.

The authors’ original implementation of the k-center strategy recalculates the
distances to each center in every iteration for all unlabeled samples from Da. MET
provides an optimized version of the k-center strategy for both large and smaller
adversary datasets. The default k-center strategy provided by the MET provides a
version optimized for large adversary datasets. Compared to the original implemen-
tation, it calculates the distances from each center only once for every unlabeled
sample. It keeps the minimal distance for each unlabeled sample, from which it then
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selects the maximum. This improves the performance. However, as mentioned in
Section 6.2 even with this optimization, the method is still slow if used with one
center per iteration. This is because the distances are calculated iteratively over
batches of unlabeled samples for the initial centers and the new centers. On the
one hand, this allows the method to work even with massive adversary datasets
and a target dataset with many classes. On the other hand, as a consequence, the
performance suffers.

For this reason, the MET also provides a so-called fast k-center method for smaller
datasets. It drops the calculations over batches and instead performs vectorized
operations, which improves the performance significantly. However, it is limited to
smaller adversary datasets since it calculates distances for all unlabeled samples
concurrently. Both versions can leverage the GPU if available, unlike the original
version, and additionally support a selection of multiple centers per iteration. The
runtime of the different k-center implementations for the selection of 1800 samples
on Cifar10 is shown in Table 7.1. For all versions, we select only one new center at
a time. The original version of k-center was also modified to leverage the GPU to
speed up the experiments.

From the results, we can see that both versions of k-center available in MET
outperform the k-center implementation available in the original implementation of
ActiveThief. The vectorized version of the k-center shows tremendous performance
improvement compared to the other versions. However, one must remember that the
fast k-center initially calculates the full dense distance matrix from which it takes
only the minimal distance for each unlabeled sample. For smaller adversary datasets,
this is not a problem. However, Da with a more significant number of samples starts
to become a limitation since the distance matrix might not fit into Random Access
Memory (RAM) or Video Random Access Memory (VRAM) on the GPU.

Version K-center original K-center default K-center fast
Time 0:29:31 0:27:47 0:00:1

Table 7.1: Runtime results for single sample selection of k-center method versions on
Cifar10. The runtime is reported in Hours:Minutes:Seconds format. The results are
reported as the average time after 3 completed iterations.

The next improvement was the DFAL strategy and the DFAL+k-center strategy.
As it can be seen in the experiment results in Table 6.2, it takes the DFAL strategy
a long time to score the unlabeled samples. Additionally, the method does not scale
well for higher dimensional samples, and the current implementation provided in
MET is limited only to images. For unknown reasons, the authors of ActiveThief
in their original paper did not test the combination of entropy+k-center in their
work. We thus additionally added entropy+k-center strategy to the implementation
of ActiveThief attack in MET. This combination is based on the same assumption
as the DFAL+k-center strategy. While the entropy strategy can select the samples
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closest to the decision boundaries, it does not guarantee that the samples are diverse
enough. For this reason, the k-center method is used. We tested this method on the
Cifar10 and FashionMNIST datasets and compared it to other ActiveThief methods.
The results are presented in Table 7.2. From the results, we can see that the method
shows similar performance to the other methods, even beating DFAL+k-center in
both datasets. Additionally, the running time of entropy+k-center is much lower
and can be easily used with other data types than images.

Method Cifar10 FashionMnist

Acc Agr Acc Agr
Entropy 75.25% 76.95% 84.35% 85.65%
K-center 76.2% 77.65% 86.55% 88%
DFAL 73.9% 75.35% 85.7% 87.6%

DFAL+K-center 73.7% 75.25% 86.55% 88.3%
Entropy+K-center 75.1% 76.8% 86.7% 88.1%

Table 7.2: Comparison of Entropy + K-center method to rest of the ActiveThief
methods. Acc stands for test accuracy, and Agr represents test agreement.

Additionally to the entropy+k-center, we also tried using a method from [54] based
on active transfer learning called Active Transfer Learning for Adaptive Sampling
(ATLAS), which combines both uncertainty and diversity sampling into one method.
The method tries to leverage Tranfer Learning by retraining the model during the
AL. It does this by giving the samples from the validation set new binary labels
(correct, incorrect) depending on whether they were correctly labeled by the model,
creating a new training set. This new training set is used to retrain the model to
predict whether the sample is labeled “correctly” or “incorrectly”.

This new model created by the TL can tell us whether the current model will
correctly predict the label for a sample. It is used to predict labels for the unlabeled
samples. The samples which are predicted with the highest confidence of being
“incorrect” are added to the new query set and relabeled as “correct” and added to
the training set. This relabeling is based on the assumption that the models are
typically the most accurate on their training samples. Since the selected samples will
be labeled and used for training the model in the next AL iteration, we can expect
that the model will give correct predictions for these samples. This whole process
repeats until a required number of samples is selected. Unfortunately, we could not
make the method work reliably in the model extraction domain and currently have
a work in progress version as part of the MET.
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7.2 BlackBox Ripper Attack Improvements

As mentioned in Section 3.4.5, the authors did not focus on query efficiency during
the creation of their attack. As such, the performance suffers in settings where the
adversary has a limited budget. This could be seen in the results of the experiments
in Section 6. We propose two simple improvements, which improve the performance
with lower budget settings.

The first improvement is related to the use of the generated samples. The original
implementation of the attack does not store the samples created by the generator.
Each epoch repeatedly creates batches of synthetic samples, which it immediately
discards, which means that the substitute model sees each sample only once. This
seems as a very inefficient way of using the created samples since each sample is
used only once. The original version of the algorithm is even more inefficient if
one considers that each sample creation requires multiple queries to the victim
model. Thus, we propose a simple improvement for the attack. Instead of using
new samples for each batch in every epoch, we propose creating the samples once in
the beginning and saving them, thus creating an adversary dataset Da consisting of
NPDN samples. This dataset is then used for the training of the substitute model.
We call this version BlackBox ripper Saved. Figure 7.1 shows the flowchart for the
updated version of the BlackBox ripper attack.

The second improvement is related to the selection of the best samples for each
batch. Originally, during the attack, when the sample with the lowest loss fulfills the
optimization criterion of the evolutionary algorithm, the optimization is stopped,
the best sample is added to the batch, and the rest of the samples are thrown away.
However, while the optimization criterion is not fulfilled, the latent vector, which
generates the sample with the lowest loss in the current iteration, is used to generate
the latent vectors in the next iteration by adding to it a small random noise. This
means that there is a chance that additional samples in the last iteration of the
evolutionary algorithm could fulfill the optimization criterion since all samples in a
single iteration of the algorithm are generated from similar latent vectors. To see if
our assumption is correct, we created a version of the attack called BlackBox ripper
Additional. This version of the attack tries to check if the rest of the samples in the
last iteration of the evolutionary algorithm fulfill the optimization criterion and adds
them to the batch. This method’s goal is to increase the attack efficiency since it
minimizes the number of unused samples, which were already queried to the victim
model.

The proposed improved versions are compared with the original version of BlackBox
Ripper on Cifar10 and FashionMNIST datasets. We use the same settings as the
ones used in the baseline experiments. The testing of the new versions is performed
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with a budget set to 15, 000 queries. The results are shown in Table 7.3. The
BlackBox ripper Saved version achieves more than 40% improvement in accuracy and
agreement than the original version in Cifar10 dataset and over 50% improvement
in FashionMNIST with the simple Random method. The same trend can be seen
with the Optimized method too. In both methods the Saved version achieves a
better result with a budget more than 6× smaller than the original version. As
for the BlackBox ripper Additional by itself, the additional samples show marginal
improvements. However, the combination of both improvements in BlackBox ripper
Additional + Saved brings the performance of the attack to a level similar to that of
CopyCat, KnockOff-Nets, and ActiveThief attacks.

Train

Save

Generator

Evolutionary search

Query

1

2

3

4

Figure 7.1: Flowchart of BlackBox ripper saved attack

Method Cifar10 FashionMNIST
Acc Agr Acc Agr

Random 22.2% 22.15% 26.7% 26.85%
Random All 42.75% 43.05% 74.65% 75.45%
Random Saved 60.25% 61.25% 81.3% 82.35%
Optimized 24.85% 25.1% 58.75% 59.2%
Optimized All 61.45% 62.5% 82.85% 84.25%
Optimized Additional 28.85% 28.9% 62.2% 62.85%
Optimized Saved 67.95% 69.1% 85.25% 87.15%
Optimized Additional + Saved 75.15% 76.75% 86.4% 88.2%

Table 7.3: Comparison of the BlackBox ripper proposed improvements with the original
version of the attack. Acc stands for test accuracy, and Agr represents test agreement.
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7.3 Semi-Supervised Learning in Model Extraction
Domain

In all results from the experiments in Chapter 6, we can observe a similar tendency.
The increase in test accuracy of the substitute model comes hand in hand with
increasing test agreement. This result motivated our interest in Semi-Supervised
Learning (SSL) as it might be possible after finishing the attack to use the unlabeled
samples from the adversary dataset Da to improve the test accuracy of the learned
substitute model and at the same time improving its test agreement. All of this
without needing to send additional queries to the victim model. We note that this
assumption might be valid only in cases where the victim model performs well as was
in our experiments. The preliminary results of experiments, where the victim model
has worse performance, show that the test accuracy and the test agreement have
antagonistic behavior. The increase in test agreement results in lower test accuracy
and vice versa. For these reasons, the Semi-Supervised Learning (SSL) approach
might be more interesting for adversaries motivated by task accuracy extraction
than fidelity extraction.

Currently, there is, as far as we know, only one instance of using SSL in model
extraction attacks [3]. In their case, they tested SSL methods with only PD data
from the same distribution as the training data of the victim model and with methods
designed for their tested datasets. There currently, however, does not exist any work
showing comprehensive results to see how SSL performs in more realistic scenarios
with both PD samples and NPD samples from a different distribution. The use
of SSL however, might be problematic, especially with NPD samples since there
are some essential prerequisites that the sample distribution must-have for SSL,
as mentioned in Section 2.1.4. These assumptions might prove to be a limiting
factor for using SSL in the model extraction domain. Since as seen in the results of
KnockOff-Nets in [5] samples with the same labels vary greatly when using NPD
data. We planned to implement some SSL methods in MET, but there was not
enough time to test their perfromance. However, it is an interesting topic for future
work and we plan to add SSL to MET in the future.
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Chapter 8

Conclusion

Despite the increasing momentum of model extraction attacks in the recent literature,
there is currently no easy way to test and compare the attacks proposed in different
papers under variable settings. For this purpose, we created the Model Extraction
Tool (MET), which allows easy testing and comparison of model extraction attacks.
MET currently offers the largest number of implemented model extraction attacks
compared to other similar tools. In total, MET offers five different attacks with
over 20 total variations. We plan to release the tool under the MIT license so that
researchers can use it and modify it freely. Additionally, all experiments in this work
are also provided together with the tool as scripts for easy reproducibility of the
results.

Based on the literature review and a set of requirements, we chose 5 different
attacks for implementation. The implemented attacks were CopyCat, BlackBox,
ActiveThief, KnockOff-Nets, and BlackBox ripper. All attacks were compared to
the original implementations and were tested for correctness in settings as close to
the original papers as possible.

Using MET, we performed the most extensive comparison of the different model
extraction attacks under the same settings to date. The experiments were performed
in a challenging scenario where the adversary has only black-box access to the victim
model and is using Non-Problem Domain (NPD) samples for the attack. From the
results, the attacks that were able to create the best substitute model were CopyCat,
ActiveThief, and KnockOff-Nets. The results also showed that the BlackBox attack
performance suffers in scenarios where the adversary does not have access to PD
samples from a similar distribution as the samples used to train the victim model.
The most important conclusion we can, however, make from the results of the
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8. Conclusion........................................
experiments is that all sophisticated model extraction attacks, while showing better
results, provide only marginal benefits to the simple CopyCat attack in our scenario
with a weak adversary.

The running time performance of the attacks, which is a neglected piece of
information in most of the model extraction papers, was also measured. Contrary to
the attack performance results on the creation of substitute models, the running time
results showed much more significant variance. Overall, the two slowest attacks were
the ActiveThief attack with the DFAL method and the BlacBox ripper attack with
the evolutionary algorithm. Our results showed that the BlackBox ripper attack,
running time heavily depends on the similarity between the training dataset used
for training the GAN generator and the target domain of the victim model. If we
consider the scenario, where runtime is as an important factor for the adversary
as the performance of the final substitute model, the best overall model extraction
attack is the KnockOff-Nets attack. KnockOff-Nets was able to keep consistently
good performance in both categories over all of our experiments.

Furthermore, we proposed multiple improvements to the ActiveThief and BlackBox
ripper attacks. In the case of the ActiveThief attack, we focused on improving
the running time performance of the k-center attack. Our implementation, k-
center-fast, is 1, 771× times faster than the original k-center, while maintaining
the attack performance in terms of accuracy and agreement. We also tested the
performance of the entropy+k-center method, which was omitted by the ActiveThief’s
authors. The method showed similar performance to the other methods available
in ActiveThief. However, compared to the DFAL+k-center method, which also
combines the uncertainty and diversity sampling, the entropy+k-center offers a
much better runtime performance. As for the BlackBox ripper attack, we proposed
two improvements to the attack, which increase the query efficiency of the attack
significantly. Our improved version can achieve better results with a much smaller
budget compared to the original version of the attack.

Lastly, we discussed the potential future research into SSL, which is currently an
untapped approach in the model extraction domain and offers potentially exciting
improvements to all existing model extraction attacks. During our experiments, we
also noticed a possible defense against model extraction attacks. If data augmentation
was used during the training of the victim model, the performance of all attacks
dropped, while the victim model’s performance differed only slightly from the model
trained without data augmentation. Unfortunately, due to time constraints, it was not
possible to study this phenomenon further to check to study the phenomenon deeper
and establish if it is a defense applicable to a variety of settings and datasets. This
merits further research since if the model extraction attacks are indeed susceptible
to performance loss depending on the training regime of the victim model, it could
provide an easy defense against these types of attacks.
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........................................ 8. Conclusion

We were able to successfully implement the MET tool for testing and trying
different model extraction attacks. Using the tool, we performed a comprehensive
comparison of the implemented attacks and proposed improvements on some of
the them. Furthermore, we also discussed the possible future research in model
extraction attacks. Unfortunately, we were not able to do more experiments to get a
deeper insight into model extractions attacks. We hope that in the future MET will
be useful to researchers interested in the developemnt of future model extraction
attacks and defenses as well as to anyone that is interested in testing their own
model against state-of-the-art model extraction attacks.
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